Effects of various plant polyphenols on bladder carcinogen benzidine-induced mutagenicity. 2007

Patrudu S Makena, and King-Thom Chung
Department of Biology, The University of Memphis, TN 38152, United States. spmakena@gmail.com

Benzidine (Bz), a human bladder carcinogen, was strongly mutagenic to Salmonella TA102 tester strain in the Ames Salmonella microsome/mutagenicity assay in the presence of rat liver S9 mix. Various non-mutagenic plant polyphenols were included in the assay to test their inhibitory effects on the Bz-induced mutations. Coumestrol, ellagic acid (EA), (-)-epicatechin (EC), (-)-epichatechingallate (ECG), gallic acid (GA), (-)-gallocatechin (GC), plumbagin, propyl gallate (PG), taxifolin, and 2,2',4'-trihydroxychalcone were found to have a strong inhibitory effect on Bz-induced mutations. (-)-Epigallo-catechingallate (EGCG), fisetin, (-)-gallocatechingallate (GCG), and piceatannol were moderately inhibitory to the mutations; whereas, (-)-catechin, (-)-catechingallate (CG), and reseveratrol were weakly inhibitory to the mutations. (-)-Epigallocatechin (EGC) and 7,3',4'-trihydroxy isoflavon were not inhibitory to the Bz-induced mutations. Isoliquirtigenin, quercetin dihydrate, and rhein were found to be mutagenic in tester strain TA102. Benzidine mediated lipid peroxidation was conducted employing the thiobarbituric acid reactive substances (TBARS) assay using linoleic acid as a substrate. In the presence of rat liver S9 mix, Bz could cause lipid peroxidation as an outcome of production of oxygen free radicals. Incorporation of the above mentioned non-mutagenic plant polyphenols significantly inhibited benzidine mediated lipid peroxidation in a time dependent manner. These polyphenols also effectively reduced the iron mediated lipid peroxidation. Thus, it is concluded that the inhibition of oxidative mutagenicity of Bz by plant polyphenols could be due to an inhibitory effect of plant polyphenols on the bioactivating enzymes such as cytochrome P-450 and peroxidase and the chelation of iron present in the cytochrome P-450 in the S9 mix. Thus, these plant polyphenols play a significant inhibitory role on Bz-induced mutagenicity.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009152 Mutagenicity Tests Tests of chemical substances and physical agents for mutagenic potential. They include microbial, insect, mammalian cell, and whole animal tests. Genetic Toxicity Tests,Genotoxicity Tests,Mutagen Screening,Tests, Genetic Toxicity,Toxicity Tests, Genetic,Genetic Toxicity Test,Genotoxicity Test,Mutagen Screenings,Mutagenicity Test,Screening, Mutagen,Screenings, Mutagen,Test, Genotoxicity,Tests, Genotoxicity,Toxicity Test, Genetic
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D010636 Phenols Benzene derivatives that include one or more hydroxyl groups attached to the ring structure.
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D001749 Urinary Bladder Neoplasms Tumors or cancer of the URINARY BLADDER. Bladder Cancer,Bladder Neoplasms,Cancer of Bladder,Bladder Tumors,Cancer of the Bladder,Malignant Tumor of Urinary Bladder,Neoplasms, Bladder,Urinary Bladder Cancer,Bladder Cancers,Bladder Neoplasm,Bladder Tumor,Cancer, Bladder,Cancer, Urinary Bladder,Neoplasm, Bladder,Neoplasm, Urinary Bladder,Tumor, Bladder,Tumors, Bladder,Urinary Bladder Neoplasm
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005419 Flavonoids A group of phenyl benzopyrans named for having structures like FLAVONES. 2-Phenyl-Benzopyran,2-Phenyl-Chromene,Bioflavonoid,Bioflavonoids,Flavonoid,2-Phenyl-Benzopyrans,2-Phenyl-Chromenes,2 Phenyl Benzopyran,2 Phenyl Benzopyrans,2 Phenyl Chromene,2 Phenyl Chromenes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001205 Ascorbic Acid A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. Vitamin C,Ascorbic Acid, Monosodium Salt,Ferrous Ascorbate,Hybrin,L-Ascorbic Acid,Magnesium Ascorbate,Magnesium Ascorbicum,Magnesium di-L-Ascorbate,Magnorbin,Sodium Ascorbate,Acid, Ascorbic,Acid, L-Ascorbic,Ascorbate, Ferrous,Ascorbate, Magnesium,Ascorbate, Sodium,L Ascorbic Acid,Magnesium di L Ascorbate,di-L-Ascorbate, Magnesium

Related Publications

Patrudu S Makena, and King-Thom Chung
May 1974, The Journal of urology,
Patrudu S Makena, and King-Thom Chung
October 1969, The New England journal of medicine,
Patrudu S Makena, and King-Thom Chung
September 1977, Mutation research,
Patrudu S Makena, and King-Thom Chung
October 1986, Mutation research,
Patrudu S Makena, and King-Thom Chung
January 2007, Microbial pathogenesis,
Patrudu S Makena, and King-Thom Chung
March 1993, Indian journal of experimental biology,
Patrudu S Makena, and King-Thom Chung
January 1987, Environmental and molecular mutagenesis,
Patrudu S Makena, and King-Thom Chung
January 1997, Environmental and molecular mutagenesis,
Patrudu S Makena, and King-Thom Chung
March 2005, Phytomedicine : international journal of phytotherapy and phytopharmacology,
Copied contents to your clipboard!