Differential endoplasmic reticulum stress signaling pathways mediated by iNOS. 2007

Yi-Hsuan Hsieh, and Ih-Jen Su, and Huan-Yao Lei, and Ming-Derg Lai, and Wen-Wei Chang, and Wenya Huang
Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.

Accumulated misfolded proteins in endoplasmic reticulum (ER) activate ER stress signaling pathways. Here we identified the ER factors that generate ROS molecules. After mouse NIH3T3 cells were treated with either tunicamycin or thapsigargin, oxidative stress was induced. We found inducible nitric oxide synthase (iNOS) was involved in the generation of ROS induced by ER stress. When thapsigargin-treated cells were pre-treated with iNOS inhibitors 1400W or L-canavanine, their ER stress-induced oxidative stress was almost totally abolished. This effect was not seen in the cells treated with tunicamycin. Therefore, iNOS appears to mediate the ER stress subpathway caused by Ca(2+) efflux. To the contrary, after we treated the cells with the 26S proteasome inhibitors lactacystin or MG-132, the UPR-induced oxidative stress dramatically increased, indicating that clearing misfolded proteins from the ER lumen reduced the oxidative stress. Therefore, the oxidative stress induced by ER stress signaling is mediated through both iNOS-dependent and -independent subpathways.

UI MeSH Term Description Entries
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014415 Tunicamycin An N-acetylglycosamine containing antiviral antibiotic obtained from Streptomyces lysosuperificus. It is also active against some bacteria and fungi, because it inhibits the glucosylation of proteins. Tunicamycin is used as tool in the study of microbial biosynthetic mechanisms.
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015971 Gene Expression Regulation, Enzymologic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis. Enzymologic Gene Expression Regulation,Regulation of Gene Expression, Enzymologic,Regulation, Gene Expression, Enzymologic
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D052247 Nitric Oxide Synthase Type II A CALCIUM-independent subtype of nitric oxide synthase that may play a role in immune function. It is an inducible enzyme whose expression is transcriptionally regulated by a variety of CYTOKINES. INOS Enzyme,Inducible NOS Protein,Inducible Nitric Oxide Synthase,NOS-II,Nitric Oxide Synthase II,Nitric Oxide Synthase, Type II,NOS II
D018384 Oxidative Stress A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi). Anti-oxidative Stress,Antioxidative Stress,DNA Oxidative Damage,Nitro-Oxidative Stress,Oxidative Cleavage,Oxidative DNA Damage,Oxidative Damage,Oxidative Injury,Oxidative Nitrative Stress,Oxidative Stress Injury,Oxidative and Nitrosative Stress,Stress, Oxidative,Anti oxidative Stress,Anti-oxidative Stresses,Antioxidative Stresses,Cleavage, Oxidative,DNA Damage, Oxidative,DNA Oxidative Damages,Damage, DNA Oxidative,Damage, Oxidative,Damage, Oxidative DNA,Injury, Oxidative,Injury, Oxidative Stress,Nitrative Stress, Oxidative,Nitro Oxidative Stress,Nitro-Oxidative Stresses,Oxidative Cleavages,Oxidative DNA Damages,Oxidative Damage, DNA,Oxidative Damages,Oxidative Injuries,Oxidative Nitrative Stresses,Oxidative Stress Injuries,Oxidative Stresses,Stress Injury, Oxidative,Stress, Anti-oxidative,Stress, Antioxidative,Stress, Nitro-Oxidative,Stress, Oxidative Nitrative,Stresses, Nitro-Oxidative

Related Publications

Yi-Hsuan Hsieh, and Ih-Jen Su, and Huan-Yao Lei, and Ming-Derg Lai, and Wen-Wei Chang, and Wenya Huang
January 2019, Current protein & peptide science,
Yi-Hsuan Hsieh, and Ih-Jen Su, and Huan-Yao Lei, and Ming-Derg Lai, and Wen-Wei Chang, and Wenya Huang
January 2009, BioFactors (Oxford, England),
Yi-Hsuan Hsieh, and Ih-Jen Su, and Huan-Yao Lei, and Ming-Derg Lai, and Wen-Wei Chang, and Wenya Huang
March 2013, The International journal of neuroscience,
Yi-Hsuan Hsieh, and Ih-Jen Su, and Huan-Yao Lei, and Ming-Derg Lai, and Wen-Wei Chang, and Wenya Huang
January 2012, Hepato-gastroenterology,
Yi-Hsuan Hsieh, and Ih-Jen Su, and Huan-Yao Lei, and Ming-Derg Lai, and Wen-Wei Chang, and Wenya Huang
July 2016, Biological chemistry,
Yi-Hsuan Hsieh, and Ih-Jen Su, and Huan-Yao Lei, and Ming-Derg Lai, and Wen-Wei Chang, and Wenya Huang
January 2024, Frontiers in cell and developmental biology,
Yi-Hsuan Hsieh, and Ih-Jen Su, and Huan-Yao Lei, and Ming-Derg Lai, and Wen-Wei Chang, and Wenya Huang
September 2012, Acta oncologica (Stockholm, Sweden),
Yi-Hsuan Hsieh, and Ih-Jen Su, and Huan-Yao Lei, and Ming-Derg Lai, and Wen-Wei Chang, and Wenya Huang
February 2016, Scientific reports,
Yi-Hsuan Hsieh, and Ih-Jen Su, and Huan-Yao Lei, and Ming-Derg Lai, and Wen-Wei Chang, and Wenya Huang
January 2013, Progress in molecular biology and translational science,
Yi-Hsuan Hsieh, and Ih-Jen Su, and Huan-Yao Lei, and Ming-Derg Lai, and Wen-Wei Chang, and Wenya Huang
October 2006, Physiological reviews,
Copied contents to your clipboard!