Tetrahydroaminoacridine improves passive avoidance retention defects induced by aging and medial septal lesion but not by fimbria-fornix lesion. 1991

P Riekkinen, and M Riekkinen, and H Lahtinen, and J Sirviö, and A Valjakka, and P Riekkinen
Department of Neurology, University of Kuopio, Finland.

The present study examines whether tetrahydroaminoacridine (THA) can improve the deterioration in passive avoidance (PA) retention performance induced by medial septal (MS) and fimbria-fornix (FF) lesions in young rats or by aging. Retention of young MS-lesioned rats was improved by pretraining injection of THA at 3 mg/kg, but not by THA at 1 mg/kg or by either of the posttraining doses of THA (1 and 3 mg/kg). Pretraining injections of THA at 1 or 3 mg/kg had no effect on the PA retention performance of FF-lesioned rats. Age-induced PA failure was alleviated by pretraining administration of THA at 1 and 3 mg/kg. Posttraining injections of THA (1 or 3 mg/kg) had no effect on PA retention performance of aged rats. These results demonstrate that 1) THA may improve hippocampal cholinergic denervation-induced functional deficits and 2) some of the age-related PA deficits may be due to a cholinergic deficit and can be reversed with THA.

UI MeSH Term Description Entries
D008297 Male Males
D008568 Memory Complex mental function having four distinct phases: (1) memorizing or learning, (2) retention, (3) recall, and (4) recognition. Clinically, it is usually subdivided into immediate, recent, and remote memory.
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D012044 Regression Analysis Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable. Regression Diagnostics,Statistical Regression,Analysis, Regression,Analyses, Regression,Diagnostics, Regression,Regression Analyses,Regression, Statistical,Regressions, Statistical,Statistical Regressions
D002795 Choline O-Acetyltransferase An enzyme that catalyzes the formation of acetylcholine from acetyl-CoA and choline. EC 2.3.1.6. Choline Acetylase,Choline Acetyltransferase,Acetylase, Choline,Acetyltransferase, Choline,Choline O Acetyltransferase,O-Acetyltransferase, Choline
D002800 Cholinesterase Inhibitors Drugs that inhibit cholinesterases. The neurotransmitter ACETYLCHOLINE is rapidly hydrolyzed, and thereby inactivated, by cholinesterases. When cholinesterases are inhibited, the action of endogenously released acetylcholine at cholinergic synapses is potentiated. Cholinesterase inhibitors are widely used clinically for their potentiation of cholinergic inputs to the gastrointestinal tract and urinary bladder, the eye, and skeletal muscles; they are also used for their effects on the heart and the central nervous system. Acetylcholinesterase Inhibitor,Acetylcholinesterase Inhibitors,Anti-Cholinesterase,Anticholinesterase,Anticholinesterase Agent,Anticholinesterase Agents,Anticholinesterase Drug,Cholinesterase Inhibitor,Anti-Cholinesterases,Anticholinesterase Drugs,Anticholinesterases,Cholinesterase Inhibitors, Irreversible,Cholinesterase Inhibitors, Reversible,Agent, Anticholinesterase,Agents, Anticholinesterase,Anti Cholinesterase,Anti Cholinesterases,Drug, Anticholinesterase,Drugs, Anticholinesterase,Inhibitor, Acetylcholinesterase,Inhibitor, Cholinesterase,Inhibitors, Acetylcholinesterase,Inhibitors, Cholinesterase,Inhibitors, Irreversible Cholinesterase,Inhibitors, Reversible Cholinesterase,Irreversible Cholinesterase Inhibitors,Reversible Cholinesterase Inhibitors
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums

Related Publications

P Riekkinen, and M Riekkinen, and H Lahtinen, and J Sirviö, and A Valjakka, and P Riekkinen
March 1999, Brain research,
P Riekkinen, and M Riekkinen, and H Lahtinen, and J Sirviö, and A Valjakka, and P Riekkinen
December 1996, Brain research. Molecular brain research,
P Riekkinen, and M Riekkinen, and H Lahtinen, and J Sirviö, and A Valjakka, and P Riekkinen
February 2000, Neuroscience letters,
P Riekkinen, and M Riekkinen, and H Lahtinen, and J Sirviö, and A Valjakka, and P Riekkinen
July 1998, Brain research,
P Riekkinen, and M Riekkinen, and H Lahtinen, and J Sirviö, and A Valjakka, and P Riekkinen
November 1973, Physiology & behavior,
P Riekkinen, and M Riekkinen, and H Lahtinen, and J Sirviö, and A Valjakka, and P Riekkinen
January 1990, Restorative neurology and neuroscience,
P Riekkinen, and M Riekkinen, and H Lahtinen, and J Sirviö, and A Valjakka, and P Riekkinen
December 1995, Behavioural brain research,
P Riekkinen, and M Riekkinen, and H Lahtinen, and J Sirviö, and A Valjakka, and P Riekkinen
November 1998, Behavioural brain research,
P Riekkinen, and M Riekkinen, and H Lahtinen, and J Sirviö, and A Valjakka, and P Riekkinen
April 1984, Behavioral neuroscience,
P Riekkinen, and M Riekkinen, and H Lahtinen, and J Sirviö, and A Valjakka, and P Riekkinen
January 2001, Restorative neurology and neuroscience,
Copied contents to your clipboard!