Molecular quantification of symbiotic dinoflagellate algae of the genus Symbiodinium. 2007

Jeannette E Loram, and Neil Boonham, and Peter O'Toole, and Henry G Trapido-Rosenthal, and Angela E Douglas
Department of Biology, University of York, York, YO10 5YW, UK.

The dinoflagellate microalga Symbiodinium is the dominant algal symbiont in corals and related marine animals. To explore the incidence of mixed infections, methods employing real-time quantitative polymerase chain reaction (QPCR) and fluorescence in situ hybridization (FISH) were developed. In experiments focusing on Symbiodinium clades A and B, QPCR and FISH results were well correlated and generally more precise and sensitive than those from the endpoint PCR-restriction fragment length polymorphism analysis (PCR-RFLP) traditionally used for this application, thus increasing the detected incidence of mixed infections. For example, the prevalence of mixed infections in the sea anemone Condylactis gigantea was 40% by PCR-RFLP and 80%-90% by QPCR and FISH. However, the use of QPCR and FISH was limited by inter-host variation in the rRNA gene copy number per Symbiodinium cell, precluding any single conversion factor between QPCR signal and Symbiodinium cell number; and one FISH probe that gave excellent hybridization efficiency with cultured Symbiodinium yielded variable results with Symbiodinium from symbioses. After controlling for these caveats, QPCR studies revealed that field-collected hosts previously described as universally unialgal bore up to 1.6% of the alternative clade. Further research is required to establish the contribution that algal cells at low density in symbiosis and external to the symbiosis make to the minor clade.

UI MeSH Term Description Entries
D012150 Polymorphism, Restriction Fragment Length Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment. RFLP,Restriction Fragment Length Polymorphism,RFLPs,Restriction Fragment Length Polymorphisms
D004141 Dinoflagellida Flagellate EUKARYOTES, found mainly in the oceans. They are characterized by the presence of transverse and longitudinal flagella which propel the organisms in a rotating manner through the water. Dinoflagellida were formerly members of the class Phytomastigophorea under the old five kingdom paradigm. Amphidinium,Dinoflagellata,Dinophyceae,Dinophycidae,Dinophyta,Dinophytes,Gambierdiscus toxicus,Gonyaulax,Gymnodinium,Peridinium,Pyrrhophyta,Pyrrophyta,Dinoflagellates
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012615 Sea Anemones The order Actiniaria, in the class ANTHOZOA, comprised of large, solitary polyps. All species are carnivorous. Actiniaria,Actiniarias,Anemone, Sea,Anemones, Sea,Sea Anemone
D013559 Symbiosis The relationship between two different species of organisms that are interdependent; each gains benefits from the other or a relationship between different species where both of the organisms in question benefit from the presence of the other. Endosymbiosis,Commensalism,Mutualism
D014644 Genetic Variation Genotypic differences observed among individuals in a population. Genetic Diversity,Variation, Genetic,Diversity, Genetic,Diversities, Genetic,Genetic Diversities,Genetic Variations,Variations, Genetic
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D017404 In Situ Hybridization, Fluorescence A type of IN SITU HYBRIDIZATION in which target sequences are stained with fluorescent dye so their location and size can be determined using fluorescence microscopy. This staining is sufficiently distinct that the hybridization signal can be seen both in metaphase spreads and in interphase nuclei. FISH Technique,Fluorescent in Situ Hybridization,Hybridization in Situ, Fluorescence,FISH Technic,Hybridization in Situ, Fluorescent,In Situ Hybridization, Fluorescent,FISH Technics,FISH Techniques,Technic, FISH,Technics, FISH,Technique, FISH,Techniques, FISH

Related Publications

Jeannette E Loram, and Neil Boonham, and Peter O'Toole, and Henry G Trapido-Rosenthal, and Angela E Douglas
January 2006, Molecular phylogenetics and evolution,
Jeannette E Loram, and Neil Boonham, and Peter O'Toole, and Henry G Trapido-Rosenthal, and Angela E Douglas
January 2012, PloS one,
Jeannette E Loram, and Neil Boonham, and Peter O'Toole, and Henry G Trapido-Rosenthal, and Angela E Douglas
February 2018, Environmental microbiology reports,
Jeannette E Loram, and Neil Boonham, and Peter O'Toole, and Henry G Trapido-Rosenthal, and Angela E Douglas
February 2009, Molecular ecology,
Jeannette E Loram, and Neil Boonham, and Peter O'Toole, and Henry G Trapido-Rosenthal, and Angela E Douglas
June 2005, Protist,
Jeannette E Loram, and Neil Boonham, and Peter O'Toole, and Henry G Trapido-Rosenthal, and Angela E Douglas
January 2003, The Journal of eukaryotic microbiology,
Jeannette E Loram, and Neil Boonham, and Peter O'Toole, and Henry G Trapido-Rosenthal, and Angela E Douglas
March 2024, Nature communications,
Jeannette E Loram, and Neil Boonham, and Peter O'Toole, and Henry G Trapido-Rosenthal, and Angela E Douglas
March 2014, Marine drugs,
Jeannette E Loram, and Neil Boonham, and Peter O'Toole, and Henry G Trapido-Rosenthal, and Angela E Douglas
November 2018, Protist,
Copied contents to your clipboard!