Alcohol biomarker analysis: simultaneous determination of 5-hydroxytryptophol glucuronide and 5-hydroxyindoleacetic acid by direct injection of urine using ultra-performance liquid chromatography-tandem mass spectrometry. 2007

Nikolai Stephanson, and Anders Helander, and Olof Beck
Department of Medicine, Division of Clinical Pharmacology, Karolinska Institute and University Hospital, SE-171 76 Stockholm, Sweden.

A direct ultra-performance liquid chromatography-tandem mass spectrometry method (UPLC-MS/MS) for simultaneous measurement of urinary 5-hydroxytryptophol glucuronide (GTOL) and 5-hydroxyindoleacetic acid (5-HIAA) was developed. The GTOL/5-HIAA ratio is used as an alcohol biomarker with clinical and forensic applications. The method involved dilution of the urine sample with deuterated analogues (internal standards), reversed-phase chromatography with gradient elution, electrospray ionisation and monitoring of two product ions per analyte in selected reaction monitoring mode. The measuring ranges were 6.7-10 000 nmol/l for GTOL and 0.07-100 micromol/l for 5-HIAA. The intra- and inter-assay imprecision, expressed as the coefficient of variation, was below 7%. Influence from ion suppression was noted for both compounds but was compensated for by the use of co-eluting internal standards. The accuracy in analytical recovery of added substance to urine samples was 96 and 98%, respectively, for GTOL and 5-HIAA. Method comparison with GC-MS for GTOL in 25 authentic patient samples confirmed the accuracy of the method with a median ratio between methods (GC-MS to UPLC-MS/MS) of 1.14 (r(2) = 0.975). The difference is explained by the fact that the GC-MS method also measures unconjugated 5-hydroxytryptophol naturally present in urine. The comparison with data for 5-HIAA obtained by an HPLC method demonstrated a median ratio of 1.05 between the methods. The UPLC-MS/MS method was capable of measuring endogenous GTOL and 5-HIAA levels in urine, which agreed with the literature data. In conclusion, a fully validated and robust direct method for the routine measurement of urinary GTOL and 5-HIAA was developed.

UI MeSH Term Description Entries
D007202 Indicators and Reagents Substances used for the detection, identification, analysis, etc. of chemical, biological, or pathologic processes or conditions. Indicators are substances that change in physical appearance, e.g., color, at or approaching the endpoint of a chemical titration, e.g., on the passage between acidity and alkalinity. Reagents are substances used for the detection or determination of another substance by chemical or microscopical means, especially analysis. Types of reagents are precipitants, solvents, oxidizers, reducers, fluxes, and colorimetric reagents. (From Grant & Hackh's Chemical Dictionary, 5th ed, p301, p499) Indicator,Reagent,Reagents,Indicators,Reagents and Indicators
D008401 Gas Chromatography-Mass Spectrometry A microanalytical technique combining mass spectrometry and gas chromatography for the qualitative as well as quantitative determinations of compounds. Chromatography, Gas-Liquid-Mass Spectrometry,Chromatography, Gas-Mass Spectrometry,GCMS,Spectrometry, Mass-Gas Chromatography,Spectrum Analysis, Mass-Gas Chromatography,Gas-Liquid Chromatography-Mass Spectrometry,Mass Spectrometry-Gas Chromatography,Chromatography, Gas Liquid Mass Spectrometry,Chromatography, Gas Mass Spectrometry,Chromatography, Mass Spectrometry-Gas,Chromatography-Mass Spectrometry, Gas,Chromatography-Mass Spectrometry, Gas-Liquid,Gas Chromatography Mass Spectrometry,Gas Liquid Chromatography Mass Spectrometry,Mass Spectrometry Gas Chromatography,Spectrometries, Mass-Gas Chromatography,Spectrometry, Gas Chromatography-Mass,Spectrometry, Gas-Liquid Chromatography-Mass,Spectrometry, Mass Gas Chromatography,Spectrometry-Gas Chromatography, Mass,Spectrum Analysis, Mass Gas Chromatography
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006897 Hydroxyindoleacetic Acid 5-HIAA,5-Hydroxy-3-Indoleacetic Acid,5-Hydroxyindolamine Acetic Acid,5 Hydroxy 3 Indoleacetic Acid,5 Hydroxyindolamine Acetic Acid,Acetic Acid, 5-Hydroxyindolamine,Acid, 5-Hydroxy-3-Indoleacetic,Acid, 5-Hydroxyindolamine Acetic,Acid, Hydroxyindoleacetic
D006917 Hydroxytryptophol 5-Hydroxy-indole-3-ethanol.
D000428 Alcohol Drinking Behaviors associated with the ingesting of ALCOHOLIC BEVERAGES, including social drinking. Alcohol Consumption,Alcohol Intake,Drinking, Alcohol,Alcohol Drinking Habits,Alcohol Drinking Habit,Alcohol Intakes,Consumption, Alcohol,Drinking Habit, Alcohol,Habit, Alcohol Drinking,Habits, Alcohol Drinking,Intake, Alcohol
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D015415 Biomarkers Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, ENVIRONMENTAL EXPOSURE and its effects, disease diagnosis; METABOLIC PROCESSES; SUBSTANCE ABUSE; PREGNANCY; cell line development; EPIDEMIOLOGIC STUDIES; etc. Biochemical Markers,Biological Markers,Biomarker,Clinical Markers,Immunologic Markers,Laboratory Markers,Markers, Biochemical,Markers, Biological,Markers, Clinical,Markers, Immunologic,Markers, Laboratory,Markers, Serum,Markers, Surrogate,Markers, Viral,Serum Markers,Surrogate Markers,Viral Markers,Biochemical Marker,Biologic Marker,Biologic Markers,Clinical Marker,Immune Marker,Immune Markers,Immunologic Marker,Laboratory Marker,Marker, Biochemical,Marker, Biological,Marker, Clinical,Marker, Immunologic,Marker, Laboratory,Marker, Serum,Marker, Surrogate,Serum Marker,Surrogate End Point,Surrogate End Points,Surrogate Endpoint,Surrogate Endpoints,Surrogate Marker,Viral Marker,Biological Marker,End Point, Surrogate,End Points, Surrogate,Endpoint, Surrogate,Endpoints, Surrogate,Marker, Biologic,Marker, Immune,Marker, Viral,Markers, Biologic,Markers, Immune
D053719 Tandem Mass Spectrometry A mass spectrometry technique using two (MS/MS) or more mass analyzers. With two in tandem, the precursor ions are mass-selected by a first mass analyzer, and focused into a collision region where they are then fragmented into product ions which are then characterized by a second mass analyzer. A variety of techniques are used to separate the compounds, ionize them, and introduce them to the first mass analyzer. For example, for in GC-MS/MS, GAS CHROMATOGRAPHY-MASS SPECTROMETRY is involved in separating relatively small compounds by GAS CHROMATOGRAPHY prior to injecting them into an ionization chamber for the mass selection. Mass Spectrometry-Mass Spectrometry,Mass Spectrometry Mass Spectrometry,Mass Spectrometry, Tandem

Related Publications

Nikolai Stephanson, and Anders Helander, and Olof Beck
January 2022, Methods in molecular biology (Clifton, N.J.),
Nikolai Stephanson, and Anders Helander, and Olof Beck
March 2019, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences,
Nikolai Stephanson, and Anders Helander, and Olof Beck
September 2018, Environmental pollution (Barking, Essex : 1987),
Nikolai Stephanson, and Anders Helander, and Olof Beck
September 2023, Zhonghua lao dong wei sheng zhi ye bing za zhi = Zhonghua laodong weisheng zhiyebing zazhi = Chinese journal of industrial hygiene and occupational diseases,
Nikolai Stephanson, and Anders Helander, and Olof Beck
June 2009, Rapid communications in mass spectrometry : RCM,
Nikolai Stephanson, and Anders Helander, and Olof Beck
October 2017, Se pu = Chinese journal of chromatography,
Nikolai Stephanson, and Anders Helander, and Olof Beck
November 2013, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences,
Nikolai Stephanson, and Anders Helander, and Olof Beck
July 2014, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences,
Copied contents to your clipboard!