Interstitial photodynamic therapy of nonresectable malignant glioma recurrences using 5-aminolevulinic acid induced protoporphyrin IX. 2007

Tobias J Beck, and Friedrich W Kreth, and Wolfgang Beyer, and Jan H Mehrkens, and Andreas Obermeier, and Herbert Stepp, and Walter Stummer, and Reinhold Baumgartner
Laser Research Laboratory, Ludwig-Maximilians-University, Marchioninistr. 23, 81377 Munich, Germany. tbeck@med.uni-muenchen.de

OBJECTIVE Limited knowledge of the light and temperature distribution within the target volume in combination with non-selective accumulation of the applied photosensitizers (PS) has hampered the clinical relevance of interstitial photodynamic therapy (iPDT) for treatment of malignant glioma patients. The current pilot study focused on the development and the clinical implementation of an accurate and reproducible irradiation scheme for iPDT using 5-aminolevulinic acid (5-ALA) induced protoporphyrin IX (PPIX) as a selectively working PS. METHODS Monte Carlo simulations of fluence rate and heat transport simulations were performed using the optical properties of normal brain tissue infiltrated by tumor cells (absorption coefficient micro(a) = 0.2 cm(-1), reduced scattering coefficient: micro'(s) = 20 cm(-1)). A modified 3-D treatment-planning software was used to calculate both, the treatment-volume and the exact position of the light diffusers within the lesion. The feasibility and the risk of iPDT were tested in 10 patients with small and circumscribed recurrent malignant gliomas. RESULTS The optimum distance between the implanted light diffusers was determined to be 9 mm with regard to both fluence rate and temperature distribution. For this distance a temperature increase above 42 degrees C was not expected to occur. Up to six cylindrical light diffusers were stereotactically implanted to achieve a complete irradiation of the tumor volume, which was possible in every single patient (mean tumor volume: 5.9 cm3). The total applied light fluence was between 4,320 J and 11,520 J. Side effects of iPDT were not observed. Median survival was 15 months. CONCLUSIONS 5-ALA iPDT in combination with a 3-D treatment-planning (which was based on optical and thermal simulations) is a safe and feasible treatment modality. The clinical impact of these findings deserves further prospective evaluation.

UI MeSH Term Description Entries
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009010 Monte Carlo Method In statistics, a technique for numerically approximating the solution of a mathematical problem by studying the distribution of some random variable, often generated by a computer. The name alludes to the randomness characteristic of the games of chance played at the gambling casinos in Monte Carlo. (From Random House Unabridged Dictionary, 2d ed, 1993) Method, Monte Carlo
D009364 Neoplasm Recurrence, Local The local recurrence of a neoplasm following treatment. It arises from microscopic cells of the original neoplasm that have escaped therapeutic intervention and later become clinically visible at the original site. Local Neoplasm Recurrence,Local Neoplasm Recurrences,Locoregional Neoplasm Recurrence,Neoplasm Recurrence, Locoregional,Neoplasm Recurrences, Local,Recurrence, Local Neoplasm,Recurrence, Locoregional Neoplasm,Recurrences, Local Neoplasm,Locoregional Neoplasm Recurrences,Neoplasm Recurrences, Locoregional,Recurrences, Locoregional Neoplasm
D010778 Photochemotherapy Therapy using oral or topical photosensitizing agents with subsequent exposure to light. Blue Light Photodynamic Therapy,Photodynamic Therapy,Red Light PDT,Red Light Photodynamic Therapy,Therapy, Photodynamic,Light PDT, Red,PDT, Red Light,Photochemotherapies,Photodynamic Therapies,Therapies, Photodynamic
D010865 Pilot Projects Small-scale tests of methods and procedures to be used on a larger scale if the pilot study demonstrates that these methods and procedures can work. Pilot Studies,Pilot Study,Pilot Project,Project, Pilot,Projects, Pilot,Studies, Pilot,Study, Pilot
D011524 Protoporphyrins Porphyrins with four methyl, two vinyl, and two propionic acid side chains attached to the pyrrole rings. Protoporphyrin IX occurs in hemoglobin, myoglobin, and most of the cytochromes.
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D005240 Feasibility Studies Studies to determine the advantages or disadvantages, practicability, or capability of accomplishing a projected plan, study, or project. Feasibility Study,Studies, Feasibility,Study, Feasibility
D005910 Glioma Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21) Glial Cell Tumors,Malignant Glioma,Mixed Glioma,Glial Cell Tumor,Glioma, Malignant,Glioma, Mixed,Gliomas,Gliomas, Malignant,Gliomas, Mixed,Malignant Gliomas,Mixed Gliomas,Tumor, Glial Cell,Tumors, Glial Cell

Related Publications

Tobias J Beck, and Friedrich W Kreth, and Wolfgang Beyer, and Jan H Mehrkens, and Andreas Obermeier, and Herbert Stepp, and Walter Stummer, and Reinhold Baumgartner
April 2021, Cancers,
Tobias J Beck, and Friedrich W Kreth, and Wolfgang Beyer, and Jan H Mehrkens, and Andreas Obermeier, and Herbert Stepp, and Walter Stummer, and Reinhold Baumgartner
July 2012, Journal of neuro-oncology,
Tobias J Beck, and Friedrich W Kreth, and Wolfgang Beyer, and Jan H Mehrkens, and Andreas Obermeier, and Herbert Stepp, and Walter Stummer, and Reinhold Baumgartner
July 1997, The Prostate,
Tobias J Beck, and Friedrich W Kreth, and Wolfgang Beyer, and Jan H Mehrkens, and Andreas Obermeier, and Herbert Stepp, and Walter Stummer, and Reinhold Baumgartner
June 2007, Journal of photochemistry and photobiology. B, Biology,
Tobias J Beck, and Friedrich W Kreth, and Wolfgang Beyer, and Jan H Mehrkens, and Andreas Obermeier, and Herbert Stepp, and Walter Stummer, and Reinhold Baumgartner
December 2006, Zentralblatt fur Gynakologie,
Tobias J Beck, and Friedrich W Kreth, and Wolfgang Beyer, and Jan H Mehrkens, and Andreas Obermeier, and Herbert Stepp, and Walter Stummer, and Reinhold Baumgartner
June 2012, Oncology reports,
Tobias J Beck, and Friedrich W Kreth, and Wolfgang Beyer, and Jan H Mehrkens, and Andreas Obermeier, and Herbert Stepp, and Walter Stummer, and Reinhold Baumgartner
July 2000, Photochemistry and photobiology,
Tobias J Beck, and Friedrich W Kreth, and Wolfgang Beyer, and Jan H Mehrkens, and Andreas Obermeier, and Herbert Stepp, and Walter Stummer, and Reinhold Baumgartner
September 2016, Oncotarget,
Tobias J Beck, and Friedrich W Kreth, and Wolfgang Beyer, and Jan H Mehrkens, and Andreas Obermeier, and Herbert Stepp, and Walter Stummer, and Reinhold Baumgartner
January 2010, Photochemistry and photobiology,
Tobias J Beck, and Friedrich W Kreth, and Wolfgang Beyer, and Jan H Mehrkens, and Andreas Obermeier, and Herbert Stepp, and Walter Stummer, and Reinhold Baumgartner
October 2016, Acta neurochirurgica,
Copied contents to your clipboard!