Thyroid hormone replacement normalizes renal renin and angiotensin receptor expression in thyroidectomized fetal sheep. 2007

Kai Chen, and Luke C Carey, and Nancy K Valego, and James C Rose
Department of Obstetrics and Gynecology, Center for Research in Obstetrics and Gynecoogy, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1066, USA.

Previous studies have suggested that thyroid hormone influences maturation of the renin-angiotensin system (RAS) and cardiovascular function in the late-gestation fetal sheep. To further examine the importance of thyroid hormone in this regard, we used the technique of thyroidectomy (TX) to remove endogenous thyroid hormone from the circulation and then replaced it with physiological amounts of exogenous thyroxine. We hypothesized that the previously observed changes in RAS activity and cardiovascular function associated with TX would be normalized. TX was performed at 120 days of gestational age (dGA), and control fetuses were sham operated. After 3 days of recovery, TX fetuses were continuously intravenously infused with thyroxine until delivery by cesarean section close to term (around 138 dGA). Immediately before necropsy, fetuses were infused with isoproterenol, and the hemodynamic responses were noted. Thyroid hormone replacement normalized not only plasma triiodothyronine (T3) and thyroxine (T4) levels but also the TX-induced decreases in renal renin mRNA and renal renin content. Renal ANG II subtype receptor expression levels were also normalized for both mRNA and protein. Decreased basal heat rate and systolic blood pressure associated with TX returned to normal following replacement; however, changes in mean blood pressure and isoproterenol-induced changes in mean blood pressure were not altered. These findings demonstrate that replacement of thyroid hormone in hypothyroid sheep fetuses can restore renal ANG II receptor and renin expression and secretion to normal.

UI MeSH Term Description Entries
D007037 Hypothyroidism A syndrome that results from abnormally low secretion of THYROID HORMONES from the THYROID GLAND, leading to a decrease in BASAL METABOLIC RATE. In its most severe form, there is accumulation of MUCOPOLYSACCHARIDES in the SKIN and EDEMA, known as MYXEDEMA. It may be primary or secondary due to other pituitary disease, or hypothalamic dysfunction. Central Hypothyroidism,Primary Hypothyroidism,Secondary Hypothyroidism,TSH Deficiency,Thyroid-Stimulating Hormone Deficiency,Central Hypothyroidisms,Deficiency, TSH,Deficiency, Thyroid-Stimulating Hormone,Hormone Deficiency, Thyroid-Stimulating,Hypothyroidism, Central,Hypothyroidism, Primary,Hypothyroidism, Secondary,Hypothyroidisms,Primary Hypothyroidisms,Secondary Hypothyroidisms,TSH Deficiencies,Thyroid Stimulating Hormone Deficiency,Thyroid-Stimulating Hormone Deficiencies
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D012083 Renin A highly specific (Leu-Leu) endopeptidase that generates ANGIOTENSIN I from its precursor ANGIOTENSINOGEN, leading to a cascade of reactions which elevate BLOOD PRESSURE and increase sodium retention by the kidney in the RENIN-ANGIOTENSIN SYSTEM. The enzyme was formerly listed as EC 3.4.99.19. Angiotensin-Forming Enzyme,Angiotensinogenase,Big Renin,Cryorenin,Inactive Renin,Pre-Prorenin,Preprorenin,Prorenin,Angiotensin Forming Enzyme,Pre Prorenin,Renin, Big,Renin, Inactive
D012084 Renin-Angiotensin System A BLOOD PRESSURE regulating system of interacting components that include RENIN; ANGIOTENSINOGEN; ANGIOTENSIN CONVERTING ENZYME; ANGIOTENSIN I; ANGIOTENSIN II; and angiotensinase. Renin, an enzyme produced in the kidney, acts on angiotensinogen, an alpha-2 globulin produced by the liver, forming ANGIOTENSIN I. Angiotensin-converting enzyme, contained in the lung, acts on angiotensin I in the plasma converting it to ANGIOTENSIN II, an extremely powerful vasoconstrictor. Angiotensin II causes contraction of the arteriolar and renal VASCULAR SMOOTH MUSCLE, leading to retention of salt and water in the KIDNEY and increased arterial blood pressure. In addition, angiotensin II stimulates the release of ALDOSTERONE from the ADRENAL CORTEX, which in turn also increases salt and water retention in the kidney. Angiotensin-converting enzyme also breaks down BRADYKININ, a powerful vasodilator and component of the KALLIKREIN-KININ SYSTEM. Renin-Angiotensin-Aldosterone System,Renin Angiotensin Aldosterone System,Renin Angiotensin System,System, Renin-Angiotensin,System, Renin-Angiotensin-Aldosterone
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002319 Cardiovascular System The HEART and the BLOOD VESSELS by which BLOOD is pumped and circulated through the body. Circulatory System,Cardiovascular Systems,Circulatory Systems
D005260 Female Females
D005865 Gestational Age The age of the conceptus, beginning from the time of FERTILIZATION. In clinical obstetrics, the gestational age is often estimated from the onset of the last MENSTRUATION which is about 2 weeks before OVULATION and fertilization. It is also estimated to begin from fertilization, estrus, coitus, or artificial insemination. Embryologic Age,Fetal Maturity, Chronologic,Chronologic Fetal Maturity,Fetal Age,Maturity, Chronologic Fetal,Age, Embryologic,Age, Fetal,Age, Gestational,Ages, Embryologic,Ages, Fetal,Ages, Gestational,Embryologic Ages,Fetal Ages,Gestational Ages
D006340 Heart Rate, Fetal The heart rate of the FETUS. The normal range at term is between 120 and 160 beats per minute. Fetal Heart Rate,Fetal Heart Rates,Heart Rates, Fetal,Rate, Fetal Heart,Rates, Fetal Heart

Related Publications

Kai Chen, and Luke C Carey, and Nancy K Valego, and James C Rose
August 1996, Clinical and experimental pharmacology & physiology,
Kai Chen, and Luke C Carey, and Nancy K Valego, and James C Rose
October 1994, Journal of neurochemistry,
Kai Chen, and Luke C Carey, and Nancy K Valego, and James C Rose
February 1981, Endocrinology,
Kai Chen, and Luke C Carey, and Nancy K Valego, and James C Rose
August 2001, Urology,
Kai Chen, and Luke C Carey, and Nancy K Valego, and James C Rose
November 1999, Kidney international,
Kai Chen, and Luke C Carey, and Nancy K Valego, and James C Rose
June 1995, Pediatric research,
Kai Chen, and Luke C Carey, and Nancy K Valego, and James C Rose
July 2014, Pediatric nephrology (Berlin, Germany),
Kai Chen, and Luke C Carey, and Nancy K Valego, and James C Rose
December 1995, Pediatric research,
Kai Chen, and Luke C Carey, and Nancy K Valego, and James C Rose
November 1995, Hypertension (Dallas, Tex. : 1979),
Kai Chen, and Luke C Carey, and Nancy K Valego, and James C Rose
February 2010, Molecular and cellular endocrinology,
Copied contents to your clipboard!