Segmental, synaptic actions of commissural interneurons in the mouse spinal cord. 2007

Katharina A Quinlan, and Ole Kiehn
Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden.

Left-right alternation depends on activity in commissural interneurons (CINs) that have axons crossing in the midline. In this study, we investigate the CIN connectivity to local motor neurons using a newly developed preparation of the in vitro neonatal mouse spinal cord that allows us to identify all classes of CINs. Nineteen of 29 short-range CINs with axonal projections <1.5 segments (sCINs) directly excited, directly inhibited, or indirectly inhibited contralateral motor neurons in the quiescent spinal cord. Excitation was glutamatergic and inhibition was mixed glycinergic and/or GABAergic. Long-range CINs were also found to have input to local, contralateral motor neurons. Thirteen of 29 descending CINs had similar synaptic connectivity to contralateral motor neurons as the sCINs, including direct excitation and direct and indirect inhibition. Some (9 of 23) rostrally projecting ascending CINs, and a few (2 of 10) CINs with bifurcating axons that both ascend and descend, indirectly inhibited local, contralateral motor neurons. Rhythmic firing during locomotor-like activity was observed in a number of CINs with segmental synaptic effects on contralateral motor neurons. This study outlines the basic connectivity pattern of CINs in the mouse spinal cord on a segmental level. Our study suggests that, based on observed synaptic connectivity, both short- and long-range CINs are likely involved in segmental left-right coordination and that the CIN system is organized into a dual-inhibitory and single-excitatory system. These systems are organized in a way that they could provide appropriate coordination during locomotion.

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D007839 Functional Laterality Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot. Ambidexterity,Behavioral Laterality,Handedness,Laterality of Motor Control,Mirror Writing,Laterality, Behavioral,Laterality, Functional,Mirror Writings,Motor Control Laterality,Writing, Mirror,Writings, Mirror
D008124 Locomotion Movement or the ability to move from one place or another. It can refer to humans, vertebrate or invertebrate animals, and microorganisms. Locomotor Activity,Activities, Locomotor,Activity, Locomotor,Locomotor Activities
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Katharina A Quinlan, and Ole Kiehn
July 2003, The Journal of comparative neurology,
Katharina A Quinlan, and Ole Kiehn
March 2006, Journal of neurophysiology,
Katharina A Quinlan, and Ole Kiehn
December 2009, Neuroscience,
Katharina A Quinlan, and Ole Kiehn
October 2012, Journal of neurophysiology,
Katharina A Quinlan, and Ole Kiehn
June 1984, Journal of neurophysiology,
Katharina A Quinlan, and Ole Kiehn
November 2009, The Journal of comparative neurology,
Katharina A Quinlan, and Ole Kiehn
May 1999, Journal of neurophysiology,
Katharina A Quinlan, and Ole Kiehn
May 2002, The Journal of comparative neurology,
Copied contents to your clipboard!