Centrin1 is required for organelle segregation and cytokinesis in Trypanosoma brucei. 2007

Angamuthu Selvapandiyan, and Praveen Kumar, and James C Morris, and Jeffrey L Salisbury, and Ching C Wang, and Hira L Nakhasi
Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA.

Centrin is a calcium-binding centrosome/basal body-associated protein involved in duplication and segregation of these organelles in eukaryotes. We had shown that disruption of one of the centrin genes (centrin1) in Leishmania amastigotes resulted in failure of both basal body duplication and cytokinesis. Here, we undertook to define the role of centrin1 (TbCen1) in the duplication and segregation of basal body and its associated organelles kinetoplast and Golgi, as well as its role in cytokinesis of the procyclic form of Trypanosoma brucei by depleting its protein using RNA inhibition methodology. TbCen1-depleted cells showed significant reduction in growth compared with control cells. Morphological analysis of these cells showed they were large and pleomorphic with multiple detached flagella. Both immunofluorescence assays using organelle-specific antibodies and electron microscopic analysis showed that TbCen1-deficient cells contained multiple basal bodies, kinetoplasts, Golgi, and nuclei. These multiple organelles were, however, closely clustered together, indicating duplication without segregation in the absence of centrin. This failure in organelle segregation may be the likely cause of inhibition of cytokinesis, suggesting for the first time a new and unique role for centrin in the segregation of organelles without affecting their multiplication in the procyclic form of T. brucei.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009626 Terminology as Topic Works about the terms, expressions, designations, or symbols used in a particular science, discipline, or specialized subject area. Etymology,Nomenclature as Topic,Etymologies
D010271 Parasites Invertebrate organisms that live on or in another organism (the host), and benefit at the expense of the other. Traditionally excluded from definition of parasites are pathogenic BACTERIA; FUNGI; VIRUSES; and PLANTS; though they may live parasitically. Parasite
D005407 Flagella A whiplike motility appendage present on the surface cells. Prokaryote flagella are composed of a protein called FLAGELLIN. Bacteria can have a single flagellum, a tuft at one pole, or multiple flagella covering the entire surface. In eukaryotes, flagella are threadlike protoplasmic extensions used to propel flagellates and sperm. Flagella have the same basic structure as CILIA but are longer in proportion to the cell bearing them and present in much smaller numbers. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Flagellum
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

Angamuthu Selvapandiyan, and Praveen Kumar, and James C Morris, and Jeffrey L Salisbury, and Ching C Wang, and Hira L Nakhasi
May 2002, The Journal of biological chemistry,
Angamuthu Selvapandiyan, and Praveen Kumar, and James C Morris, and Jeffrey L Salisbury, and Ching C Wang, and Hira L Nakhasi
February 2008, Journal of cell science,
Angamuthu Selvapandiyan, and Praveen Kumar, and James C Morris, and Jeffrey L Salisbury, and Ching C Wang, and Hira L Nakhasi
January 2018, Molecular and biochemical parasitology,
Angamuthu Selvapandiyan, and Praveen Kumar, and James C Morris, and Jeffrey L Salisbury, and Ching C Wang, and Hira L Nakhasi
October 2010, Molecular and biochemical parasitology,
Angamuthu Selvapandiyan, and Praveen Kumar, and James C Morris, and Jeffrey L Salisbury, and Ching C Wang, and Hira L Nakhasi
December 2018, Acta tropica,
Angamuthu Selvapandiyan, and Praveen Kumar, and James C Morris, and Jeffrey L Salisbury, and Ching C Wang, and Hira L Nakhasi
September 2007, Molecular microbiology,
Angamuthu Selvapandiyan, and Praveen Kumar, and James C Morris, and Jeffrey L Salisbury, and Ching C Wang, and Hira L Nakhasi
July 2007, Eukaryotic cell,
Angamuthu Selvapandiyan, and Praveen Kumar, and James C Morris, and Jeffrey L Salisbury, and Ching C Wang, and Hira L Nakhasi
December 2007, Molecular and biochemical parasitology,
Angamuthu Selvapandiyan, and Praveen Kumar, and James C Morris, and Jeffrey L Salisbury, and Ching C Wang, and Hira L Nakhasi
April 2006, The Journal of biological chemistry,
Angamuthu Selvapandiyan, and Praveen Kumar, and James C Morris, and Jeffrey L Salisbury, and Ching C Wang, and Hira L Nakhasi
April 2005, Molecular microbiology,
Copied contents to your clipboard!