The neuronal organization of horizontal semicircular canalactivated inhibitory vestibulocollic neurons in the cat. 1991

N Isu, and A Sakuma, and K Hiranuma, and H Uchino, and S Sasaki, and M Imagawa, and Y Uchino
Department of Electrical and Electronics Engineering, Faculty of Engineering, Fukui University, Japan.

1. The somatic location and axonal projections of inhibitory vestibular nucleus neurons activated by the horizontal semicircular canal nerve (HCN) were studied in anesthetized cats. Cats were anesthetized with ketamine hydrochloride and pentobarbital sodium. 2. Intracellular recordings were obtained from 11 neck extensor motoneurons which were identified by antidromic activation from the dosal rami (DR) in the C1 segment. Stimulation of the ipsilateral (i-) HCN and the ipsilateral abducens (AB) nucleus evoked IPSPs in the motoneurons. These IPSPs were fully or partially occluded when they were evoked simultaneously. 3. Intracellular recordings were obtained from 8 AB motoneurons. Stimulation of the i-HCN and the i-C1DR motoneuron pool evoked IPSPs in the AB motoneurons. These IPSPs were also partially occluded when they were evoked simultaneously, which implied that some HCN-activated neurons inhibit both i-AB motoneurons and ipsilateral neck motoneurons. 4. Unit activity was extracellularly recorded from 30 vestibular neurons that were activated monosynaptically by i-HCN stimulation. Their axonal projections were determined by stimulating the i-AB nucleus and the i-C1DR motoneuron pool. Eight neurons were activated by both stimuli, and were termed vestibulooculo-collic (VOC) neurons. Their axonal branching was examined by means of local stimulation in and around the i-AB nucleus and the i-C1DR motoneuron pool. Eighteen neurons were antidromically activated from the i-C1DR motoneuron pool but not from the i-AB nucleus. These were termed vestibulo-collic (VC) neurons. Four neurons were activated from the i-AB nucleus but not from the ventral funiculus in the C1 segment, and were termed vestibulo-ocular (VO) neurons.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009333 Neck The part of a human or animal body connecting the HEAD to the rest of the body. Necks
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D012023 Reflex, Monosynaptic A reflex in which the AFFERENT NEURONS synapse directly on the EFFERENT NEURONS, without any INTERCALATED NEURONS. (Lockard, Desk Reference for Neuroscience, 2nd ed.) Monosynaptic Reflex
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D000010 Abducens Nerve The 6th cranial nerve which originates in the ABDUCENS NUCLEUS of the PONS and sends motor fibers to the lateral rectus muscles of the EYE. Damage to the nerve or its nucleus disrupts horizontal eye movement control. Cranial Nerve VI,Sixth Cranial Nerve,Abducent Nerve,Nerve VI,Nervus Abducens,Abducen, Nervus,Abducens, Nervus,Abducent Nerves,Cranial Nerve VIs,Cranial Nerve, Sixth,Nerve VI, Cranial,Nerve VIs,Nerve VIs, Cranial,Nerve, Abducens,Nerve, Abducent,Nerve, Sixth Cranial,Nerves, Sixth Cranial,Nervus Abducen,Sixth Cranial Nerves
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

N Isu, and A Sakuma, and K Hiranuma, and H Uchino, and S Sasaki, and M Imagawa, and Y Uchino
January 1988, Experimental brain research,
N Isu, and A Sakuma, and K Hiranuma, and H Uchino, and S Sasaki, and M Imagawa, and Y Uchino
November 1975, Experimental brain research,
N Isu, and A Sakuma, and K Hiranuma, and H Uchino, and S Sasaki, and M Imagawa, and Y Uchino
September 2001, Experimental brain research,
N Isu, and A Sakuma, and K Hiranuma, and H Uchino, and S Sasaki, and M Imagawa, and Y Uchino
June 1983, Neuroscience letters,
N Isu, and A Sakuma, and K Hiranuma, and H Uchino, and S Sasaki, and M Imagawa, and Y Uchino
September 1975, The Tohoku journal of experimental medicine,
N Isu, and A Sakuma, and K Hiranuma, and H Uchino, and S Sasaki, and M Imagawa, and Y Uchino
January 1983, Neirofiziologiia = Neurophysiology,
N Isu, and A Sakuma, and K Hiranuma, and H Uchino, and S Sasaki, and M Imagawa, and Y Uchino
September 1978, Experimental brain research,
N Isu, and A Sakuma, and K Hiranuma, and H Uchino, and S Sasaki, and M Imagawa, and Y Uchino
June 2004, Experimental brain research,
N Isu, and A Sakuma, and K Hiranuma, and H Uchino, and S Sasaki, and M Imagawa, and Y Uchino
May 1979, Brain research,
N Isu, and A Sakuma, and K Hiranuma, and H Uchino, and S Sasaki, and M Imagawa, and Y Uchino
March 1978, Brain research,
Copied contents to your clipboard!