Development of the occipital corticotectal projection in the hamster. 1991

R W Rhoades, and B Figley, and R D Mooney, and S E Fish
Department of Anatomy, Medical College of Ohio, Toledo 43699-0008.

Anterograde and retrograde labelling with the carbocyanine dye, Di-I, was used to assess the development of the visual cortical projection to the superior colliculus (SC) in pre- and postnatal hamsters. Posterior cortical axons arrive in the SC on postnatal (P-) day one (the first 24 hours after birth = P-0) and begin to arborize in the superficial laminae (the stratum griseum superficiale [SGS] and stratum opticum [SO]) within one day after they enter the tectum. Over succeeding days, the density of the projection increases and numerous labelled fibers are visible throughout the depth of the SGS and SO. Beginning on P-6, there is a decrease in the density of labelled fibers in the upper SGS and by P-10, the laminal distribution of the occipital corticotectal pathway appears adult-like. Anterograde tracing with Di-I also revealed the presence of a few corticotectal fibers that crossed the midline in both the SC and posterior commissures to terminate mainly in the superficial tectal laminae contralateral to the injection site. Crossed corticotectal fibers were visible in hamsters aged between P-3 and P-12. Retrograde tracing with Di-I in hamsters killed between P-3 and P-12 demonstrated that both the ipsilateral and crossed corticotectal projections arose exclusively from pyramidal cells in developing lamina V.

UI MeSH Term Description Entries
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009778 Occipital Lobe Posterior portion of the CEREBRAL HEMISPHERES responsible for processing visual sensory information. It is located posterior to the parieto-occipital sulcus and extends to the preoccipital notch. Annectant Gyrus,Calcarine Fissure,Calcarine Sulcus,Cuneate Lobule,Cuneus,Cuneus Cortex,Cuneus Gyrus,Gyrus Lingualis,Lingual Gyrus,Lunate Sulcus,Medial Occipitotemporal Gyrus,Occipital Cortex,Occipital Gyrus,Occipital Region,Occipital Sulcus,Sulcus Calcarinus,Calcarine Fissures,Calcarinus, Sulcus,Cortex, Cuneus,Cortex, Occipital,Cortices, Cuneus,Cortices, Occipital,Cuneate Lobules,Cuneus Cortices,Fissure, Calcarine,Fissures, Calcarine,Gyrus Linguali,Gyrus, Annectant,Gyrus, Cuneus,Gyrus, Lingual,Gyrus, Medial Occipitotemporal,Gyrus, Occipital,Linguali, Gyrus,Lingualis, Gyrus,Lobe, Occipital,Lobes, Occipital,Lobule, Cuneate,Lobules, Cuneate,Occipital Cortices,Occipital Lobes,Occipital Regions,Occipitotemporal Gyrus, Medial,Region, Occipital,Regions, Occipital,Sulcus, Calcarine,Sulcus, Lunate,Sulcus, Occipital
D010835 Phytohemagglutinins Mucoproteins isolated from the kidney bean (Phaseolus vulgaris); some of them are mitogenic to lymphocytes, others agglutinate all or certain types of erythrocytes or lymphocytes. They are used mainly in the study of immune mechanisms and in cell culture. Kidney Bean Lectin,Kidney Bean Lectins,Lectins, Kidney Bean,Phaseolus vulgaris Lectin,Phaseolus vulgaris Lectins,Phytohemagglutinin,Hemagglutinins, Plant,Lectin, Kidney Bean,Lectin, Phaseolus vulgaris,Lectins, Phaseolus vulgaris,Plant Hemagglutinins
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D002232 Carbocyanines Compounds that contain three methine groups. They are frequently used as cationic dyes used for differential staining of biological materials. Carbocyanine
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D005260 Female Females
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster

Related Publications

R W Rhoades, and B Figley, and R D Mooney, and S E Fish
August 1978, The Journal of comparative neurology,
R W Rhoades, and B Figley, and R D Mooney, and S E Fish
January 1992, The Journal of comparative neurology,
R W Rhoades, and B Figley, and R D Mooney, and S E Fish
May 1984, The Journal of comparative neurology,
R W Rhoades, and B Figley, and R D Mooney, and S E Fish
April 1995, The European journal of neuroscience,
R W Rhoades, and B Figley, and R D Mooney, and S E Fish
March 1992, Okajimas folia anatomica Japonica,
R W Rhoades, and B Figley, and R D Mooney, and S E Fish
July 1980, Neuroscience letters,
R W Rhoades, and B Figley, and R D Mooney, and S E Fish
October 1991, Neuroreport,
R W Rhoades, and B Figley, and R D Mooney, and S E Fish
August 1998, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R W Rhoades, and B Figley, and R D Mooney, and S E Fish
May 1993, Brain research. Developmental brain research,
Copied contents to your clipboard!