The primate vestibulo-ocular reflex during combined linear and angular head motion. 1991

E W Sargent, and G D Paige
Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110.

The squirrel monkey vestibulo-ocular reflex (VOR) was studied in darkness during Earth-horizontal rotation over a frequency range, 0.01-4 Hz, with the head positioned both centrally and displaced radially relative to the axis of rotation. With the head centered, the canal-mediated angular VOR (AVOR) was recorded in isolation. However, with the head placed eccentrically, otolith-mediated linear VOR (LVOR) components interact with the AVOR to yield a combined AVOR-LVOR response. The plane of the ocular response could be manipulated by placing the head in different orientations relative to gravity (i.e. upright or nose-up). When the head was upright and centered, the horizontal AVOR was recorded. Comparisons between eye and head angular velocity showed that gain (pk eye/pk head velocity) was nearly flat, averaging 0.83, across the frequency range. Phase (difference in degrees between eye and head velocity, shifted 180 degrees by convention) was near 0 degrees, except at frequencies below 0.1 Hz where phase leads were seen. When the head was displaced eccentrically and in the nose-out position (facing away from the axis of rotation), gain rose above that of the AVOR alone. The enhancement was progressive with increasing frequency, but only for frequencies above 0.25 Hz. When the subject was turned nose-in, gain declined relative to the AVOR alone, and in a similar frequency-dependent fashion. These results are consistent with the notion that nose-out and nose-in responses to eccentric rotation represent a combined influence of the horizontal AVOR and LVOR, the latter driven by inter-aural tangential acceleration. To further evaluate this possibility, eccentric rotation was also used to assess the LVOR in isolation. With the head in the nose-up orientation, the AVOR was shifted into the head's roll plane and generated torsional ocular responses. With the head centered over the axis of rotation, no systematic horizontal responses were observed. However, when the head was displaced eccentrically and placed in the head-out and head-in positions, horizontal ocular responses were recorded which were proportional to head eccentricity and were of appropriate polarity to presume that they represented the inter-aural LVOR activated by inter-aural tangential acceleration. Response gain rose with increasing frequency, as did tangential acceleration. The LVOR in its resting state in darkness could be characterized by an average sensitivity of 40.3 degrees/s/g (g = 9.81 m/s2).(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D009068 Movement The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior. Movements
D011187 Posture The position or physical attitude of the body. Postures
D012027 Reflex, Vestibulo-Ocular A reflex wherein impulses are conveyed from the cupulas of the SEMICIRCULAR CANALS and from the OTOLITHIC MEMBRANE of the SACCULE AND UTRICLE via the VESTIBULAR NUCLEI of the BRAIN STEM and the median longitudinal fasciculus to the OCULOMOTOR NERVE nuclei. It functions to maintain a stable retinal image during head rotation by generating appropriate compensatory EYE MOVEMENTS. Vestibulo-Ocular Reflex,Reflex, Vestibuloocular,Reflexes, Vestibo-Ocular,Reflexes, Vestibuloocular,Reflex, Vestibulo Ocular,Reflexes, Vestibo Ocular,Vestibo-Ocular Reflexes,Vestibulo Ocular Reflex,Vestibuloocular Reflex,Vestibuloocular Reflexes
D005133 Eye Movements Voluntary or reflex-controlled movements of the eye. Eye Movement,Movement, Eye,Movements, Eye
D006257 Head The upper part of the human body, or the front or upper part of the body of an animal, typically separated from the rest of the body by a neck, and containing the brain, mouth, and sense organs. Heads
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012399 Rotation Motion of an object in which either one or more points on a line are fixed. It is also the motion of a particle about a fixed point. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Clinorotation,Clinorotations,Rotations
D012453 Saimiri A genus of the family CEBIDAE consisting of four species: S. boliviensis, S. orstedii (red-backed squirrel monkey), S. sciureus (common squirrel monkey), and S. ustus. They inhabit tropical rain forests in Central and South America. S. sciureus is used extensively in research studies. Monkey, Squirrel,Squirrel Monkey,Monkeys, Squirrel,Saimirus,Squirrel Monkeys

Related Publications

E W Sargent, and G D Paige
April 1997, Experimental brain research,
E W Sargent, and G D Paige
November 2007, Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery,
E W Sargent, and G D Paige
September 2008, The Canadian journal of neurological sciences. Le journal canadien des sciences neurologiques,
E W Sargent, and G D Paige
October 2001, Annals of the New York Academy of Sciences,
E W Sargent, and G D Paige
April 2002, Annals of the New York Academy of Sciences,
E W Sargent, and G D Paige
December 2008, Experimental brain research,
Copied contents to your clipboard!