TDP-43 in differential diagnosis of motor neuron disorders. 2007

Dennis W Dickson, and Keith A Josephs, and Catalina Amador-Ortiz
Department of Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, FL, 32224, USA. dickson.dennis@mayo.edu

Motor neuron disorders are clinically and pathologically heterogeneous. They can be classified into those that affect primarily upper motor neurons, lower motor neurons or both. The most common disorder to affect both upper and lower motor neurons is amyotrophic lateral sclerosis (ALS). Some forms of motor neuron disease (MND) affect primarily motor neurons in the spinal cord or brainstem, while others affect motor neurons at all levels of the neuraxis. A number of genetic loci have been identified for the various motor neuron disorders. Several of the MND genes encode for proteins important for cytoskeletal stability and axoplasmic transport. Despite these genetic advances, the relationship of the various motor neuron disorders to each other is unclear. Except for rare familial forms of ALS associated with mutations in superoxide dismutase type 1 (SOD1), which are associated with neuronal inclusions that contain SOD1, specific molecular or cellular markers that differentiate ALS from other motor neuron disorders have not been available. Recently, the TAR DNA binding protein 43 (TDP-43) has been shown to be present in neuronal inclusions in ALS, and it has been suggested that TDP-43 may be a specific marker for ALS. This pilot study aimed to determine the value of TDP-43 in the differential diagnosis of MND. Immunohistochemistry for TDP-43 was used to detect neuronal inclusions in the medulla of disorders affecting upper motor neurons, lower motor neurons or both. Medullary motor neuron pathology also was assessed in frontotemporal lobar degeneration (FTLD) that had no evidence of MND. TDP-43 immunoreactivity was detected in the hypoglossal nucleus in all cases of ALS, all cases of FTLD-MND and some of cases of primary lateral sclerosis (PLS). It was not detected in FTLD-PLS. Surprisingly, sparse TDP-43 immunoreactivity was detected in motor neurons in about 10% of FTLD that did not have clinical or pathologic features of MND. The results suggest that TDP-43 immunoreactivity is useful in differentiating FTLD-MND and ALS from other disorders associated with upper or lower motor neuron pathology. It also reveals subclinical MND in a subset of cases of FTLD without clinical or pathologic evidence of MND.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D010865 Pilot Projects Small-scale tests of methods and procedures to be used on a larger scale if the pilot study demonstrates that these methods and procedures can work. Pilot Studies,Pilot Study,Pilot Project,Project, Pilot,Projects, Pilot,Studies, Pilot,Study, Pilot
D003704 Dementia An acquired organic mental disorder with loss of intellectual abilities of sufficient severity to interfere with social or occupational functioning. The dysfunction is multifaceted and involves memory, behavior, personality, judgment, attention, spatial relations, language, abstract thought, and other executive functions. The intellectual decline is usually progressive, and initially spares the level of consciousness. Senile Paranoid Dementia,Amentia,Familial Dementia,Amentias,Dementia, Familial,Dementias,Dementias, Familial,Dementias, Senile Paranoid,Familial Dementias,Paranoid Dementia, Senile,Paranoid Dementias, Senile,Senile Paranoid Dementias
D003937 Diagnosis, Differential Determination of which one of two or more diseases or conditions a patient is suffering from by systematically comparing and contrasting results of diagnostic measures. Diagnoses, Differential,Differential Diagnoses,Differential Diagnosis
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000072105 Superoxide Dismutase-1 A superoxide dismutase (SOD1) that requires copper and zinc ions for its activity to destroy SUPEROXIDE FREE RADICALS within the CYTOPLASM. Mutations in the SOD1 gene are associated with AMYOTROPHIC LATERAL SCLEROSIS-1. Cu-Zn Superoxide Dismutase,Cuprozinc Superoxide Dismutase,SOD-1 Protein,SOD1 Protein,Superoxide Dismutase 1,Cu Zn Superoxide Dismutase,SOD 1 Protein,Superoxide Dismutase, Cu-Zn,Superoxide Dismutase, Cuprozinc

Related Publications

Dennis W Dickson, and Keith A Josephs, and Catalina Amador-Ortiz
April 2008, Annals of neurology,
Dennis W Dickson, and Keith A Josephs, and Catalina Amador-Ortiz
January 2016, Progress in neurobiology,
Dennis W Dickson, and Keith A Josephs, and Catalina Amador-Ortiz
August 2017, Journal of neuroscience research,
Dennis W Dickson, and Keith A Josephs, and Catalina Amador-Ortiz
September 2010, Journal of neuropathology and experimental neurology,
Dennis W Dickson, and Keith A Josephs, and Catalina Amador-Ortiz
May 2013, Brain : a journal of neurology,
Dennis W Dickson, and Keith A Josephs, and Catalina Amador-Ortiz
January 2008, Neuro-Signals,
Dennis W Dickson, and Keith A Josephs, and Catalina Amador-Ortiz
April 2011, Acta neuropathologica,
Dennis W Dickson, and Keith A Josephs, and Catalina Amador-Ortiz
August 2022, Brain : a journal of neurology,
Dennis W Dickson, and Keith A Josephs, and Catalina Amador-Ortiz
September 2017, Journal of neuropathology and experimental neurology,
Dennis W Dickson, and Keith A Josephs, and Catalina Amador-Ortiz
December 2013, Experimental neurology,
Copied contents to your clipboard!