Radioprotection and radiosensitization by curcumin. 2007

Ganesh C Jagetia
Department of Radiobiology, Kasturba Medical College, Manipal, India. gc.jagetia@gmail.com

This chapter gives an overview of the radioprotective and radiosensitizing effect of curcumin. Ionizing radiations interact with biological molecules inducing radiolytic products like e(aq), *OH, *H, -OH, +H, O2, and peroxides. These free radicals damage important biomolecules and subsequently inflict deleterious effects in the organism. Whole-body exposure to ionizing radiations results in central nervous system, gastrointestinal tract, and bone marrow syndromes, whereas chronic irradiation causes cancer, birth anomalies, erythema, and dysfunctions to almost all organ of the body depending on the total dose and site of irradiation. Curcumin (diferuloyl methane), a yellow pigment present in the rhizomes of turmeric, has been used in Southeast Asia to give yellow color and flavor to curries. Turmeric has been used to treat various ailments in the Ayurvedic system of medicine in India. Recently, it has been evaluated for its radioprotective and radiosensitizing activities. Curcumin has been found to exert a dual mode of action after irradiation depending on its dose. It has been reported to protect various study systems against the deleterious effects induced by ionizing radiation and to enhance the effect of radiation. Therefore, curcumin can be very useful during radiotherapy of cancer. Administration of curcumin in patients will be able to kill the tumor cells effectively by enhancing the effect of radiation and, at the same time, protect normal cells against the harmful effects of radiation. The available information on curcumin suggests that the radioprotective effect might be mainly due to its ability to reduce oxidative stress and inhibit transcription of genes related to oxidative stress and inflammatory responses, whereas the radiosensitive activity might be due the upregulation of genes responsible for cell death.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011836 Radiation Tolerance The ability of some cells or tissues to survive lethal doses of IONIZING RADIATION. Tolerance depends on the species, cell type, and physical and chemical variables, including RADIATION-PROTECTIVE AGENTS and RADIATION-SENSITIZING AGENTS. Radiation Sensitivity,Radiosensitivity,Sensitivity, Radiation,Tolerance, Radiation,Radiation Sensitivities,Radiation Tolerances,Radiosensitivities,Sensitivities, Radiation,Tolerances, Radiation
D011837 Radiation-Protective Agents Drugs used to protect against ionizing radiation. They are usually of interest for use in radiation therapy but have been considered for other purposes, e.g. military. Radiation Protectant,Radiation Protective Agent,Radiation-Protective Agent,Radiation-Protective Drug,Radioprotective Agent,Radioprotective Agents,Radioprotective Drug,Agents, Radiation-Protective,Radiation Protectants,Radiation Protective Agents,Radiation-Protective Drugs,Radiation-Protective Effect,Radiation-Protective Effects,Radioprotective Drugs,Agent, Radiation Protective,Agent, Radiation-Protective,Agent, Radioprotective,Agents, Radiation Protective,Agents, Radioprotective,Drug, Radiation-Protective,Drug, Radioprotective,Drugs, Radiation-Protective,Drugs, Radioprotective,Effect, Radiation-Protective,Effects, Radiation-Protective,Protectant, Radiation,Protectants, Radiation,Protective Agent, Radiation,Protective Agents, Radiation,Radiation Protective Drug,Radiation Protective Drugs,Radiation Protective Effect,Radiation Protective Effects
D011838 Radiation-Sensitizing Agents Drugs used to potentiate the effectiveness of radiation therapy in destroying unwanted cells. Radiation Sensitizer,Radiosensitizing Agent,Radiosensitizing Agents,Agents, Radiation-Sensitizing,Radiation Sensitizers,Radiation Sensitizing Agents,Radiation-Sensitizing Drugs,Radiation-Sensitizing Effect,Radiation-Sensitizing Effects,Radiosensitizing Drugs,Radiosensitizing Effect,Radiosensitizing Effects,Agent, Radiosensitizing,Agents, Radiation Sensitizing,Agents, Radiosensitizing,Drugs, Radiation-Sensitizing,Drugs, Radiosensitizing,Effect, Radiation-Sensitizing,Effect, Radiosensitizing,Effects, Radiation-Sensitizing,Effects, Radiosensitizing,Radiation Sensitizing Drugs,Radiation Sensitizing Effect,Radiation Sensitizing Effects,Sensitizer, Radiation,Sensitizers, Radiation,Sensitizing Agents, Radiation
D011839 Radiation, Ionizing ELECTROMAGNETIC RADIATION or particle radiation (high energy ELEMENTARY PARTICLES) capable of directly or indirectly producing IONS in its passage through matter. The wavelengths of ionizing electromagnetic radiation are equal to or smaller than those of short (far) ultraviolet radiation and include gamma and X-rays. Ionizing Radiation,Ionizing Radiations,Radiations, Ionizing
D003474 Curcumin A yellow-orange dye obtained from tumeric, the powdered root of CURCUMA longa. It is used in the preparation of curcuma paper and the detection of boron. Curcumin appears to possess a spectrum of pharmacological properties, due primarily to its inhibitory effects on metabolic enzymes. 1,6-Heptadiene-3,5-dione, 1,7-bis(4-hydroxy-3-methoxyphenyl)-, (E,E)-,Curcumin Phytosome,Diferuloylmethane,Mervia,Turmeric Yellow,Phytosome, Curcumin,Yellow, Turmeric
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Ganesh C Jagetia
February 2024, Phytotherapy research : PTR,
Ganesh C Jagetia
November 1993, International journal of radiation biology,
Ganesh C Jagetia
October 1985, International journal of radiation biology and related studies in physics, chemistry, and medicine,
Ganesh C Jagetia
September 1974, Radiation research,
Ganesh C Jagetia
September 2016, Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine,
Ganesh C Jagetia
April 1983, International journal of radiation biology and related studies in physics, chemistry, and medicine,
Ganesh C Jagetia
January 1976, Acta Universitatis Carolinae. Medica. Monographia,
Ganesh C Jagetia
March 2019, Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico,
Copied contents to your clipboard!