Tissue specific expression of the Drosophila Adh gene: a comparison of in situ hybridization and immunocytochemistry. 1991

S M Anderson, and M R Brown, and J F McDonald
Department of Biology, UNC, Greensboro 27412.

The tissue specific patterns for Drosophila melanogaster alcohol dehydrogenase (Adh) mRNA and protein expression were determined using in situ hybridization and immunocytochemical techniques. Alcohol dehydrogenase mRNAs were localized in thin sections of frozen tissue using the hybridization of single stranded RNA probes. Alcohol dehydrogenase protein was identified in frozen tissue samples using ADH antisera, a biotinylated secondary antibody, and streptavidin conjugated to horseradish peroxidase. In tissues such as fat body, gastric caeca, and adult cardiac valve, the patterns of expression for ADH protein and mRNA were identical. Other tissues such as oocytes, nurse cells, imaginal disks, and brain show levels of Adh mRNA that are lower than or equivalent to those observed in the previously mentioned tissues, but they exhibit little or no ADH protein. The lack of concordance between Adh mRNA and ADH protein expression in oocytes and nurse cells may reflect the packaging of maternal mRNAs (but not ADH protein) for use in early development. The reason(s) for the other discrepancies in protein and mRNA expression are not known at this time but may be due to post-transcriptional regulation in these specific tissues.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007814 Larva Wormlike or grublike stage, following the egg in the life cycle of insects, worms, and other metamorphosing animals. Maggots,Tadpoles,Larvae,Maggot,Tadpole
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D000426 Alcohol Dehydrogenase A zinc-containing enzyme which oxidizes primary and secondary alcohols or hemiacetals in the presence of NAD. In alcoholic fermentation, it catalyzes the final step of reducing an aldehyde to an alcohol in the presence of NADH and hydrogen. Alcohol Dehydrogenase (NAD+),Alcohol Dehydrogenase I,Alcohol Dehydrogenase II,Alcohol-NAD+ Oxidoreductase,Yeast Alcohol Dehydrogenase,Alcohol Dehydrogenase, Yeast,Alcohol NAD+ Oxidoreductase,Dehydrogenase, Alcohol,Dehydrogenase, Yeast Alcohol,Oxidoreductase, Alcohol-NAD+
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015971 Gene Expression Regulation, Enzymologic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis. Enzymologic Gene Expression Regulation,Regulation of Gene Expression, Enzymologic,Regulation, Gene Expression, Enzymologic

Related Publications

S M Anderson, and M R Brown, and J F McDonald
January 1987, Methods in enzymology,
S M Anderson, and M R Brown, and J F McDonald
September 1984, Developmental biology,
S M Anderson, and M R Brown, and J F McDonald
September 1987, Molekuliarnaia genetika, mikrobiologiia i virusologiia,
S M Anderson, and M R Brown, and J F McDonald
January 1986, Verhandlungen der Deutschen Gesellschaft fur Pathologie,
S M Anderson, and M R Brown, and J F McDonald
January 2000, Methods in molecular biology (Clifton, N.J.),
S M Anderson, and M R Brown, and J F McDonald
January 1997, Methods in molecular biology (Clifton, N.J.),
S M Anderson, and M R Brown, and J F McDonald
February 1991, Biochemical and biophysical research communications,
S M Anderson, and M R Brown, and J F McDonald
January 2008, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!