Store-operated Ca2+ entry during intracellular Ca2+ release in mammalian skeletal muscle. 2007

Bradley S Launikonis, and Eduardo Ríos
Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL 60612, USA. b.launikonis@uq.edu.au

Store-operated Ca2+ entry (SOCE) is activated following the depletion of internal Ca2+ stores in virtually all eukaryotic cells. Shifted excitation and emission ratioing of fluorescence (SEER) was used to image mag-indo-1 trapped in the tubular (t) system of mechanically skinned rat skeletal muscle fibres to measure SOCE during intracellular Ca2+ release. Cytosolic Ca2+ transients were simultaneously imaged using the fluorescence of rhod-2. Spatially and temporally resolved images of t system [Ca2+] ([Ca2+]t-sys) allowed estimation of Ca2+ entry flux from the rate of decay of [Ca2+]t-sys. Ca2+ release was induced pharmacologically to activate SOCE without voltage-dependent contributions to Ca2+ flux. Inward Ca2+ flux was monotonically dependent on the [Ca2+] gradient, and strongly dependent on the transmembrane potential. The activation of SOCE was controlled locally. It could occur without full Ca2+ store depletion and in less than a second after initiation of store depletion. These results indicate that the molecular agonists of SOCE must be evenly distributed throughout the junctional membranes and can activate rapidly. Termination of SOCE required a net increase in [Ca2+]SR. Activation and termination of SOCE are also demonstrated, for the first time, during a single event of Ca2+ release. At the physiological [Ca2+]t-sys, near 2 mM (relative to t system volume), SOCE flux relative to accessible cytoplasmic volume was at least 18.6 microM s(-1), consistent with times of SR refilling of 1-2 min measured in intact muscle fibres.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012519 Sarcoplasmic Reticulum A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions. Reticulum, Sarcoplasmic,Reticulums, Sarcoplasmic,Sarcoplasmic Reticulums
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018482 Muscle, Skeletal A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles
D018613 Microscopy, Confocal A light microscopic technique in which only a small spot is illuminated and observed at a time. An image is constructed through point-by-point scanning of the field in this manner. Light sources may be conventional or laser, and fluorescence or transmitted observations are possible. Confocal Microscopy,Confocal Microscopy, Scanning Laser,Laser Microscopy,Laser Scanning Confocal Microscopy,Laser Scanning Microscopy,Microscopy, Confocal, Laser Scanning,Confocal Laser Scanning Microscopy,Confocal Microscopies,Laser Microscopies,Laser Scanning Microscopies,Microscopies, Confocal,Microscopies, Laser,Microscopies, Laser Scanning,Microscopy, Laser,Microscopy, Laser Scanning,Scanning Microscopies, Laser,Scanning Microscopy, Laser
D019837 Ryanodine Receptor Calcium Release Channel A tetrameric calcium release channel in the SARCOPLASMIC RETICULUM membrane of SMOOTH MUSCLE CELLS, acting oppositely to SARCOPLASMIC RETICULUM CALCIUM-TRANSPORTING ATPASES. It is important in skeletal and cardiac excitation-contraction coupling and studied by using RYANODINE. Abnormalities are implicated in CARDIAC ARRHYTHMIAS and MUSCULAR DISEASES. Calcium-Ryanodine Receptor Complex,RyR1,Ryanodine Receptor 1,Ryanodine Receptor 2,Ryanodine Receptor 3,Ryanodine Receptors,Ca Release Channel-Ryanodine Receptor,Receptor, Ryanodine,RyR2,RyR3,Ryanodine Receptor,Ca Release Channel Ryanodine Receptor,Calcium Ryanodine Receptor Complex,Complex, Calcium-Ryanodine Receptor,Receptor 1, Ryanodine,Receptor 2, Ryanodine,Receptor 3, Ryanodine,Receptor Complex, Calcium-Ryanodine,Receptors, Ryanodine

Related Publications

Bradley S Launikonis, and Eduardo Ríos
January 2007, Journal of muscle research and cell motility,
Bradley S Launikonis, and Eduardo Ríos
August 2008, Aging cell,
Bradley S Launikonis, and Eduardo Ríos
August 2010, The Journal of biological chemistry,
Bradley S Launikonis, and Eduardo Ríos
October 2010, Pflugers Archiv : European journal of physiology,
Bradley S Launikonis, and Eduardo Ríos
July 2019, Biochimica et biophysica acta. Molecular cell research,
Bradley S Launikonis, and Eduardo Ríos
May 2012, Developmental biology,
Bradley S Launikonis, and Eduardo Ríos
September 2006, Journal of cell science,
Bradley S Launikonis, and Eduardo Ríos
January 2018, Communications biology,
Bradley S Launikonis, and Eduardo Ríos
September 2010, Biophysical journal,
Copied contents to your clipboard!