Growth-phase-dependent induction of 6-phosphogluconate dehydrogenase and glucose 6-phosphate dehydrogenase in the cyanobacterium Synechococcus sp. PCC7942. 1991

S E Broedel, and R E Wolf
Department of Biological Sciences, University of Maryland, Baltimore County, Catonsville 21228.

In most cyanobacteria, the only known pathway for oxidation of stored carbohydrate in the dark or under energy-limiting conditions is the hexose monophosphate shunt. To determine whether the increased use of the shunt under these conditions derives from an increase in the activity level of the respective enzymes, we measured the effect of growth phase during the growth of batch cultures of Synechococcus sp. strain PCC7942 on the specific activity of 6-phosphogluconate dehydrogenase (6PGD) and glucose 6-phosphate dehydrogenase. The specific activities were constant during the exponential growth phase of the culture, but they increased about fivefold during the transition into stationary phase. As an approach to determining the level of expression at which the growth-phase-dependent regulation of 6PGD level is exerted, we constructed operon and gene fusions between the gnd gene, which encodes 6PGD, and the Escherichia coli lacZ gene, which encodes beta-galactosidase (beta Gal). Strains harboring the fusions integrated into the cyanobacterial chromosome were prepared, and the growth-phase dependence of beta Gal level was determined. The specific activity of beta Gal in cultures of both types of fusion strains increased during the transition into stationary phase, indicating that the growth-phase-dependent regulation is on the gnd mRNA level. Characterization of the growth-phase-dependent induction of 6PGD in strains carrying differing amounts of DNA upstream from the gnd structural gene led to the localization of the promoter and the regulatory site on the restriction map of the gene, whose sequence has previously been determined.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007763 Lac Operon The genetic unit consisting of three structural genes, an operator and a regulatory gene. The regulatory gene controls the synthesis of the three structural genes: BETA-GALACTOSIDASE and beta-galactoside permease (involved with the metabolism of lactose), and beta-thiogalactoside acetyltransferase. Lac Gene,LacZ Genes,Lactose Operon,Gene, Lac,Gene, LacZ,Genes, Lac,Genes, LacZ,Lac Genes,Lac Operons,LacZ Gene,Lactose Operons,Operon, Lac,Operon, Lactose,Operons, Lac,Operons, Lactose
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D010734 Phosphogluconate Dehydrogenase An enzyme of the oxidoreductase class that catalyzes the reaction 6-phospho-D-gluconate and NADP+ to yield D-ribulose 5-phosphate, carbon dioxide, and NADPH. The reaction is a step in the pentose phosphate pathway of glucose metabolism. (From Dorland, 27th ed) EC 1.1.1.43. 6-Phosphogluconate Dehydrogenase,6 Phosphogluconate Dehydrogenase,Dehydrogenase, 6-Phosphogluconate,Dehydrogenase, Phosphogluconate
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D005954 Glucosephosphate Dehydrogenase Glucose-6-Phosphate Dehydrogenase,Dehydrogenase, Glucose-6-Phosphate,Dehydrogenase, Glucosephosphate,Glucose 6 Phosphate Dehydrogenase
D000458 Cyanobacteria A phylum of oxygenic photosynthetic bacteria comprised of unicellular to multicellular bacteria possessing CHLOROPHYLL a and carrying out oxygenic PHOTOSYNTHESIS. Cyanobacteria are the only known organisms capable of fixing both CARBON DIOXIDE (in the presence of light) and NITROGEN. Cell morphology can include nitrogen-fixing heterocysts and/or resting cells called akinetes. Formerly called blue-green algae, cyanobacteria were traditionally treated as ALGAE. Algae, Blue-Green,Blue-Green Bacteria,Cyanophyceae,Algae, Blue Green,Bacteria, Blue Green,Bacteria, Blue-Green,Blue Green Algae,Blue Green Bacteria,Blue-Green Algae
D015183 Restriction Mapping Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA. Endonuclease Mapping, Restriction,Enzyme Mapping, Restriction,Site Mapping, Restriction,Analysis, Restriction Enzyme,Enzyme Analysis, Restriction,Restriction Enzyme Analysis,Analyses, Restriction Enzyme,Endonuclease Mappings, Restriction,Enzyme Analyses, Restriction,Enzyme Mappings, Restriction,Mapping, Restriction,Mapping, Restriction Endonuclease,Mapping, Restriction Enzyme,Mapping, Restriction Site,Mappings, Restriction,Mappings, Restriction Endonuclease,Mappings, Restriction Enzyme,Mappings, Restriction Site,Restriction Endonuclease Mapping,Restriction Endonuclease Mappings,Restriction Enzyme Analyses,Restriction Enzyme Mapping,Restriction Enzyme Mappings,Restriction Mappings,Restriction Site Mapping,Restriction Site Mappings,Site Mappings, Restriction

Related Publications

S E Broedel, and R E Wolf
October 2002, Physiologia plantarum,
S E Broedel, and R E Wolf
January 1986, La Pediatria medica e chirurgica : Medical and surgical pediatrics,
S E Broedel, and R E Wolf
October 1968, Comparative biochemistry and physiology,
S E Broedel, and R E Wolf
February 1968, American journal of clinical pathology,
S E Broedel, and R E Wolf
January 1968, Technical bulletin of the Registry of Medical Technologists. American Society of Clinical Pathologists. Registry of Medical Technologists,
S E Broedel, and R E Wolf
April 2002, Functional plant biology : FPB,
Copied contents to your clipboard!