Blockade of brain histamine metabolism alters methamphetamine-induced expression pattern of stereotypy in mice via histamine H1 receptors. 2007

J Kitanaka, and N Kitanaka, and T Tatsuta, and Y Morita, and M Takemura
Department of Pharmacology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan. kitanaka-hyg@umin.net

The administration of methamphetamine (METH, 10 mg/kg, i.p.) to male ICR mice induced stereotyped behavior consisting of nail and/or wood chip biting (86.0%), continuous sniffing (12.0%), head bobbing (1.1%), and circling (1.0%) during the observation period of 1 h. Pretreatment of the mice with metoprine (2, 10, and 20 mg/kg, i.p.), a selective inhibitor of histamine N-methyltransferase (HMT), which metabolizes histamine in the brain, significantly increased and decreased METH-induced continuous sniffing (20.5, 51.3, and 80.3%) and nail and/or wood chip biting (77.4, 45.3, and 14.2%), respectively, in a dose-dependent manner. The hypothalamic contents of histamine and its metabolite N(tau)-methylhistamine were significantly increased and decreased by metoprine (10 mg/kg, i.p.), respectively. The metoprine action on METH-induced behavior was completely abolished by pyrilamine (10 and 20 mg/kg) and ketotifen (10 mg/kg), selective, centrally acting histamine H(1) receptor antagonists, but not by fexofenadine (20 mg/kg), zolantidine (10 mg/kg) and thioperamide (10 mg/kg), a peripherally acting histamine H(1) receptor antagonist and a selective, brain-penetrating antagonist for histamine H(2) and H(3) receptors, respectively. The metoprine action was mimicked by SKF 91488 (100 microg/animal, i.c.v.), another HMT inhibitor, and the action of SKF 91488 was also blocked by pyrilamine. The frequency of the expression of METH-induced total stereotypic patterns was unchanged after metoprine pretreatment. Mice pretreated with metoprine displayed no anxiety-like behavior in the elevated plus maze test. These results suggest that brain histamine, increased by agents such as metoprine and SKF 91488, binds to histamine H(1) receptors in the brain, resulting in the modulation of dopaminergic transmission associated with stereotyped behavioral patterns induced by METH.

UI MeSH Term Description Entries
D008297 Male Males
D008694 Methamphetamine A central nervous system stimulant and sympathomimetic with actions and uses similar to DEXTROAMPHETAMINE. The smokable form is a drug of abuse and is referred to as crank, crystal, crystal meth, ice, and speed. Deoxyephedrine,Desoxyephedrine,Desoxyn,Madrine,Metamfetamine,Methamphetamine Hydrochloride,Methylamphetamine,N-Methylamphetamine,Hydrochloride, Methamphetamine,N Methylamphetamine
D008813 Mice, Inbred ICR An inbred strain of mouse that is used as a general purpose research strain, for therapeutic drug testing, and for the genetic analysis of CARCINOGEN-induced COLON CANCER. Mice, Inbred ICRC,Mice, ICR,Mouse, ICR,Mouse, Inbred ICR,Mouse, Inbred ICRC,ICR Mice,ICR Mice, Inbred,ICR Mouse,ICR Mouse, Inbred,ICRC Mice, Inbred,ICRC Mouse, Inbred,Inbred ICR Mice,Inbred ICR Mouse,Inbred ICRC Mice,Inbred ICRC Mouse
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D011969 Receptors, Histamine H1 A class of histamine receptors discriminated by their pharmacology and mode of action. Most histamine H1 receptors operate through the inositol phosphate/diacylglycerol second messenger system. Among the many responses mediated by these receptors are smooth muscle contraction, increased vascular permeability, hormone release, and cerebral glyconeogenesis. (From Biochem Soc Trans 1992 Feb;20(1):122-5) H1 Receptor,Histamine H1 Receptors,H1 Receptors,Histamine H1 Receptor,Receptors, H1,H1 Receptor, Histamine,H1 Receptors, Histamine,Receptor, H1,Receptor, Histamine H1
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D006632 Histamine An amine derived by enzymatic decarboxylation of HISTIDINE. It is a powerful stimulant of gastric secretion, a constrictor of bronchial smooth muscle, a vasodilator, and also a centrally acting neurotransmitter. Ceplene,Histamine Dihydrochloride,Histamine Hydrochloride,Peremin
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses

Related Publications

J Kitanaka, and N Kitanaka, and T Tatsuta, and Y Morita, and M Takemura
September 1993, Canadian journal of physiology and pharmacology,
J Kitanaka, and N Kitanaka, and T Tatsuta, and Y Morita, and M Takemura
March 1988, Experientia,
J Kitanaka, and N Kitanaka, and T Tatsuta, and Y Morita, and M Takemura
October 1979, The Journal of pharmacy and pharmacology,
J Kitanaka, and N Kitanaka, and T Tatsuta, and Y Morita, and M Takemura
January 1988, Pharmacology,
J Kitanaka, and N Kitanaka, and T Tatsuta, and Y Morita, and M Takemura
January 1993, European journal of pharmacology,
J Kitanaka, and N Kitanaka, and T Tatsuta, and Y Morita, and M Takemura
January 2023, Pharmacology, biochemistry, and behavior,
J Kitanaka, and N Kitanaka, and T Tatsuta, and Y Morita, and M Takemura
November 1982, The Journal of biological chemistry,
J Kitanaka, and N Kitanaka, and T Tatsuta, and Y Morita, and M Takemura
January 1983, Advances in biochemical psychopharmacology,
J Kitanaka, and N Kitanaka, and T Tatsuta, and Y Morita, and M Takemura
January 1977, European journal of pharmacology,
J Kitanaka, and N Kitanaka, and T Tatsuta, and Y Morita, and M Takemura
November 2004, Respiratory physiology & neurobiology,
Copied contents to your clipboard!