Low density lipoprotein receptor founder mutations in Afrikaner familial hypercholesterolaemic patients: a comparison of two geographical areas. 1991

F Graadt van Roggen, and D R van der Westhuyzen, and A D Marais, and W Gevers, and G A Coetzee
Department of Medical Biochemistry, University of Cape Town Medical School, South Africa.

Afrikaners with familial hypercholesterolaemia (FH) were screened for the presence of three point mutations in the low density lipoprotein receptor gene that were previously described as being relatively common in this population. The prevalence and distribution of the mutations were compared in 27 unrelated homozygous and 79 unrelated heterozygous FH Afrikaner patients from two regions in South Africa, the Transvaal and Cape Provinces. The relative distribution of the three mutations was similar in the two regions, with the FH1 mutation being the most prevalent (66%), followed by the FH2 mutation (27%) and the FH3 mutation (7%). Interestingly, defects other than the three common mutations are more common in the Cape than in the Transvaal; thus the three known mutations account for 98% of FH alleles in the Transvaal and only 74% in the Cape Province. None of the patients carried the recently described familial defective apolipoprotein B100 mutation. These results establish that three "founder" mutant genes occur amongst the Afrikaner and are responsible for the overall high prevalence of FH in this population.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011973 Receptors, LDL Receptors on the plasma membrane of nonhepatic cells that specifically bind LDL. The receptors are localized in specialized regions called coated pits. Hypercholesteremia is caused by an allelic genetic defect of three types: 1, receptors do not bind to LDL; 2, there is reduced binding of LDL; and 3, there is normal binding but no internalization of LDL. In consequence, entry of cholesterol esters into the cell is impaired and the intracellular feedback by cholesterol on 3-hydroxy-3-methylglutaryl CoA reductase is lacking. LDL Receptors,Lipoprotein LDL Receptors,Receptors, Low Density Lipoprotein,LDL Receptor,LDL Receptors, Lipoprotein,Low Density Lipoprotein Receptor,Low Density Lipoprotein Receptors,Receptors, Lipoprotein, LDL,Receptor, LDL,Receptors, Lipoprotein LDL
D006579 Heterozygote An individual having different alleles at one or more loci regarding a specific character. Carriers, Genetic,Genetic Carriers,Carrier, Genetic,Genetic Carrier,Heterozygotes
D006720 Homozygote An individual in which both alleles at a given locus are identical. Homozygotes
D006938 Hyperlipoproteinemia Type II A group of familial disorders characterized by elevated circulating cholesterol contained in either LOW-DENSITY LIPOPROTEINS alone or also in VERY-LOW-DENSITY LIPOPROTEINS (pre-beta lipoproteins). Hyperbetalipoproteinemia,Hypercholesterolemia, Essential,Hypercholesterolemia, Familial,Apolipoprotein B-100, Familial Defective,Apolipoprotein B-100, Familial Ligand-Defective,Familial Combined Hyperlipoproteinemia,Hyper-Low Density Lipoproteinemia,Hyper-Low-Density-Lipoproteinemia,Hyper-beta-Lipoproteinemia,Hypercholesterolemia, Autosomal Dominant,Hypercholesterolemia, Autosomal Dominant, Type B,Hypercholesterolemic Xanthomatosis, Familial,Hyperlipoproteinemia Type 2,Hyperlipoproteinemia Type IIa,Hyperlipoproteinemia Type IIb,Hyperlipoproteinemia, Type II,Hyperlipoproteinemia, Type IIa,LDL Receptor Disorder,Apolipoprotein B 100, Familial Defective,Apolipoprotein B 100, Familial Ligand Defective,Autosomal Dominant Hypercholesterolemia,Autosomal Dominant Hypercholesterolemias,Combined Hyperlipoproteinemia, Familial,Combined Hyperlipoproteinemias, Familial,Density Lipoproteinemia, Hyper-Low,Density Lipoproteinemias, Hyper-Low,Disorder, LDL Receptor,Disorders, LDL Receptor,Dominant Hypercholesterolemia, Autosomal,Dominant Hypercholesterolemias, Autosomal,Essential Hypercholesterolemia,Essential Hypercholesterolemias,Familial Combined Hyperlipoproteinemias,Familial Hypercholesterolemia,Familial Hypercholesterolemias,Familial Hypercholesterolemic Xanthomatoses,Familial Hypercholesterolemic Xanthomatosis,Hyper Low Density Lipoproteinemia,Hyper beta Lipoproteinemia,Hyper-Low Density Lipoproteinemias,Hyper-Low-Density-Lipoproteinemias,Hyper-beta-Lipoproteinemias,Hyperbetalipoproteinemias,Hypercholesterolemias, Autosomal Dominant,Hypercholesterolemias, Essential,Hypercholesterolemias, Familial,Hypercholesterolemic Xanthomatoses, Familial,Hyperlipoproteinemia Type 2s,Hyperlipoproteinemia Type IIas,Hyperlipoproteinemia Type IIbs,Hyperlipoproteinemia Type IIs,Hyperlipoproteinemia, Familial Combined,Hyperlipoproteinemias, Familial Combined,Hyperlipoproteinemias, Type II,Hyperlipoproteinemias, Type IIa,LDL Receptor Disorders,Lipoproteinemia, Hyper-Low Density,Lipoproteinemias, Hyper-Low Density,Receptor Disorder, LDL,Receptor Disorders, LDL,Type 2, Hyperlipoproteinemia,Type II Hyperlipoproteinemia,Type II Hyperlipoproteinemias,Type IIa Hyperlipoproteinemia,Type IIa Hyperlipoproteinemias,Xanthomatoses, Familial Hypercholesterolemic,Xanthomatosis, Familial Hypercholesterolemic
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D001055 Apolipoproteins B Major structural proteins of triacylglycerol-rich LIPOPROTEINS. There are two forms, apolipoprotein B-100 and apolipoprotein B-48, both derived from a single gene. ApoB-100 expressed in the liver is found in low-density lipoproteins (LIPOPROTEINS, LDL; LIPOPROTEINS, VLDL). ApoB-48 expressed in the intestine is found in CHYLOMICRONS. They are important in the biosynthesis, transport, and metabolism of triacylglycerol-rich lipoproteins. Plasma Apo-B levels are high in atherosclerotic patients but non-detectable in ABETALIPOPROTEINEMIA. Apo-B,Apo B,ApoB,Apoprotein (B),Apoproteins B
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013019 South Africa A republic in southern Africa, the southernmost part of Africa. It has three capitals: Pretoria (administrative), Cape Town (legislative), and Bloemfontein (judicial). Officially the Republic of South Africa since 1960, it was called the Union of South Africa 1910-1960. Republic of South Africa,Union of South Africa

Related Publications

F Graadt van Roggen, and D R van der Westhuyzen, and A D Marais, and W Gevers, and G A Coetzee
January 2014, PloS one,
F Graadt van Roggen, and D R van der Westhuyzen, and A D Marais, and W Gevers, and G A Coetzee
January 1998, Human mutation,
F Graadt van Roggen, and D R van der Westhuyzen, and A D Marais, and W Gevers, and G A Coetzee
December 1988, European journal of biochemistry,
F Graadt van Roggen, and D R van der Westhuyzen, and A D Marais, and W Gevers, and G A Coetzee
April 2011, Netherlands heart journal : monthly journal of the Netherlands Society of Cardiology and the Netherlands Heart Foundation,
F Graadt van Roggen, and D R van der Westhuyzen, and A D Marais, and W Gevers, and G A Coetzee
October 1998, Arteriosclerosis, thrombosis, and vascular biology,
F Graadt van Roggen, and D R van der Westhuyzen, and A D Marais, and W Gevers, and G A Coetzee
October 1989, South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde,
F Graadt van Roggen, and D R van der Westhuyzen, and A D Marais, and W Gevers, and G A Coetzee
January 2004, Kardiologiia,
F Graadt van Roggen, and D R van der Westhuyzen, and A D Marais, and W Gevers, and G A Coetzee
May 2015, Applied biochemistry and biotechnology,
F Graadt van Roggen, and D R van der Westhuyzen, and A D Marais, and W Gevers, and G A Coetzee
December 2021, Current opinion in lipidology,
F Graadt van Roggen, and D R van der Westhuyzen, and A D Marais, and W Gevers, and G A Coetzee
June 2013, Genetika,
Copied contents to your clipboard!