Leukaemia-specific chromosome damage detected by comet with fluorescence in situ hybridization (comet-FISH). 2007

Patricia A Escobar, and Martyn T Smith, and Ananth Vasishta, and Alan E Hubbard, and Luoping Zhang
Division of Environmental Health Sciences, School of Public Health, 140 Warren Hall, University of California, Berkeley, California 94720, USA.

Acute myeloid leukaemia (AML) is associated with exposure to benzene and treatment with chemotherapeutic agents. It is thought to arise from damage to specific regions of DNA, resulting in chromosome rearrangements or loss. For instance, a deletion on the long arm of chromosome 5 [e.g. del(5q31)] is common in AML patients previously treated with alkylating agents, such as melphalan, or exposed to benzene. Translocations of the MLL gene at 11q23 are frequently observed in AML arising from treatment with topoisomerase II inhibitors, such as etoposide. Our goal was to determine whether or not breakage at 5q31 and 11q23 is selectively induced by these chemical agents. To address this question, the comet assay combined with fluorescence in situ hybridization (comet-FISH) was used to detect DNA breakage in the specific chromosomal regions in an in vitro model. TK6 lymphoblastoid cells were exposed to melphalan, etoposide or the benzene metabolite, hydroquinone (HQ), at various concentrations. HQ, melphalan and etoposide induced DNA breaks at both 5q31 and 11q23 chromosome regions in a dose-dependant manner. However, HQ produced significantly more DNA damage at 5q31 than at 11q23. Etoposide produce slightly more DNA damage at 11q23 and melphalan had a somewhat greater effect at 5q31, but not significantly so. Thus, HQ and melphalan act similarly, perhaps explaining some similarities between benzene- and alkylating agent-induced AML. Comet-FISH also appears to be a useful approach for detecting and comparing damage to specific chromosome regions of significance in leukaemogenesis.

UI MeSH Term Description Entries
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D011495 Histone-Lysine N-Methyltransferase An enzyme that catalyzes the methylation of the epsilon-amino group of lysine residues in proteins to yield epsilon mono-, di-, and trimethyllysine. Protein Lysine Methyltransferase,Protein Methylase III,Protein Methyltransferase III,Histone-Lysine Methyltransferase,Histone Lysine Methyltransferase,Histone Lysine N Methyltransferase,Methyltransferase, Histone-Lysine,Methyltransferase, Protein Lysine,N-Methyltransferase, Histone-Lysine
D002880 Chromosomes, Human, Pair 11 A specific pair of GROUP C CHROMOSOMES of the human chromosome classification. Chromosome 11
D002895 Chromosomes, Human, Pair 5 One of the two pairs of human chromosomes in the group B class (CHROMOSOMES, HUMAN, 4-5). Chromosome 5
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000477 Alkylating Agents Highly reactive chemicals that introduce alkyl radicals into biologically active molecules and thereby prevent their proper functioning. Many are used as antineoplastic agents, but most are very toxic, with carcinogenic, mutagenic, teratogenic, and immunosuppressant actions. They have also been used as components in poison gases. Alkylating Agent,Alkylator,Alkylators,Agent, Alkylating,Agents, Alkylating
D014178 Translocation, Genetic A type of chromosome aberration characterized by CHROMOSOME BREAKAGE and transfer of the broken-off portion to another location, often to a different chromosome. Chromosomal Translocation,Translocation, Chromosomal,Chromosomal Translocations,Genetic Translocation,Genetic Translocations,Translocations, Chromosomal,Translocations, Genetic
D015470 Leukemia, Myeloid, Acute Clonal expansion of myeloid blasts in bone marrow, blood, and other tissue. Myeloid leukemias develop from changes in cells that normally produce NEUTROPHILS; BASOPHILS; EOSINOPHILS; and MONOCYTES. Leukemia, Myelogenous, Acute,Leukemia, Nonlymphocytic, Acute,Myeloid Leukemia, Acute,Nonlymphocytic Leukemia, Acute,ANLL,Acute Myelogenous Leukemia,Acute Myeloid Leukemia,Acute Myeloid Leukemia with Maturation,Acute Myeloid Leukemia without Maturation,Leukemia, Acute Myelogenous,Leukemia, Acute Myeloid,Leukemia, Myeloblastic, Acute,Leukemia, Myelocytic, Acute,Leukemia, Myeloid, Acute, M1,Leukemia, Myeloid, Acute, M2,Leukemia, Nonlymphoblastic, Acute,Myeloblastic Leukemia, Acute,Myelocytic Leukemia, Acute,Myelogenous Leukemia, Acute,Myeloid Leukemia, Acute, M1,Myeloid Leukemia, Acute, M2,Nonlymphoblastic Leukemia, Acute,Acute Myeloblastic Leukemia,Acute Myeloblastic Leukemias,Acute Myelocytic Leukemia,Acute Myelocytic Leukemias,Acute Myelogenous Leukemias,Acute Myeloid Leukemias,Acute Nonlymphoblastic Leukemia,Acute Nonlymphoblastic Leukemias,Acute Nonlymphocytic Leukemia,Acute Nonlymphocytic Leukemias,Leukemia, Acute Myeloblastic,Leukemia, Acute Myelocytic,Leukemia, Acute Nonlymphoblastic,Leukemia, Acute Nonlymphocytic,Leukemias, Acute Myeloblastic,Leukemias, Acute Myelocytic,Leukemias, Acute Myelogenous,Leukemias, Acute Myeloid,Leukemias, Acute Nonlymphoblastic,Leukemias, Acute Nonlymphocytic,Myeloblastic Leukemias, Acute,Myelocytic Leukemias, Acute,Myelogenous Leukemias, Acute,Myeloid Leukemias, Acute,Nonlymphoblastic Leukemias, Acute,Nonlymphocytic Leukemias, Acute
D017404 In Situ Hybridization, Fluorescence A type of IN SITU HYBRIDIZATION in which target sequences are stained with fluorescent dye so their location and size can be determined using fluorescence microscopy. This staining is sufficiently distinct that the hybridization signal can be seen both in metaphase spreads and in interphase nuclei. FISH Technique,Fluorescent in Situ Hybridization,Hybridization in Situ, Fluorescence,FISH Technic,Hybridization in Situ, Fluorescent,In Situ Hybridization, Fluorescent,FISH Technics,FISH Techniques,Technic, FISH,Technics, FISH,Technique, FISH,Techniques, FISH

Related Publications

Patricia A Escobar, and Martyn T Smith, and Ananth Vasishta, and Alan E Hubbard, and Luoping Zhang
May 2009, Cold Spring Harbor protocols,
Patricia A Escobar, and Martyn T Smith, and Ananth Vasishta, and Alan E Hubbard, and Luoping Zhang
January 2014, Methods in molecular biology (Clifton, N.J.),
Patricia A Escobar, and Martyn T Smith, and Ananth Vasishta, and Alan E Hubbard, and Luoping Zhang
January 2012, Methods in molecular biology (Clifton, N.J.),
Patricia A Escobar, and Martyn T Smith, and Ananth Vasishta, and Alan E Hubbard, and Luoping Zhang
January 2010, Methods in molecular biology (Clifton, N.J.),
Patricia A Escobar, and Martyn T Smith, and Ananth Vasishta, and Alan E Hubbard, and Luoping Zhang
August 1997, Genes, chromosomes & cancer,
Patricia A Escobar, and Martyn T Smith, and Ananth Vasishta, and Alan E Hubbard, and Luoping Zhang
August 2009, Cold Spring Harbor protocols,
Patricia A Escobar, and Martyn T Smith, and Ananth Vasishta, and Alan E Hubbard, and Luoping Zhang
January 2000, Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer,
Patricia A Escobar, and Martyn T Smith, and Ananth Vasishta, and Alan E Hubbard, and Luoping Zhang
November 1997, Cancer genetics and cytogenetics,
Patricia A Escobar, and Martyn T Smith, and Ananth Vasishta, and Alan E Hubbard, and Luoping Zhang
January 2009, Methods in molecular biology (Clifton, N.J.),
Patricia A Escobar, and Martyn T Smith, and Ananth Vasishta, and Alan E Hubbard, and Luoping Zhang
April 1995, International journal of cancer,
Copied contents to your clipboard!