Central role of TRPM4 channels in cerebral blood flow regulation. 2007

Stacey A Reading, and Joseph E Brayden
Department of Pharmacology, University of Vermont College of Medicine, Burlington, VT 05405, USA. sreading@uvm.edu

OBJECTIVE The transient receptor potential channel TRPM4 is critically linked to the myogenic constrictor response of cerebral arteries that occurs when intravascular pressure increases. This myogenic behavior is thought to be fundamentally involved in the mechanisms of blood flow autoregulation. In this study, we tested the hypothesis that TRPM4 channels in cerebrovascular myocytes contribute to cerebral blood flow autoregulation in vivo. METHODS In vivo suppression of cerebrovascular TRPM4 expression was achieved by infusing antisense oligodeoxynucleotides into the cerebral spinal fluid of 400- to 550-g Sprague-Dawley rats at 80 microg x day(-1) for 7 days using an osmotic pump that discharged into the lateral cerebral ventricle. Absolute cerebral blood flow measurements were obtained over a range of mean arterial pressures using fluorescent microsphere methods. RESULTS Oligonucleotides infused into the cerebrospinal fluid were detected in the smooth muscle cells of pial arteries. Semi-quantitative RT-PCR indicated that the message for TRPM4 was decreased in the cerebral arteries of antisense-treated rats. Myogenic constriction was decreased by 70% to 85% in cerebral arteries isolated from TRPM4 antisense- compared with control sense-treated rats. Cerebral blood flow was significantly greater in TRPM4 antisense- versus sense-treated rats at resting and elevated mean arterial pressures, indicating that autoregulatory vasoconstrictor activity was compromised in TRPM4 antisense-treated animals. CONCLUSIONS In vivo suppression of TRPM4 decreases cerebral artery myogenic constrictions and impairs autoregulation, thus implicating TRPM4 channels and myogenic constriction as major contributors to cerebral blood flow regulation in the living animal.

UI MeSH Term Description Entries
D008297 Male Males
D008863 Microspheres Small uniformly-sized spherical particles, of micrometer dimensions, frequently labeled with radioisotopes or various reagents acting as tags or markers. Latex Beads,Latex Particles,Latex Spheres,Microbeads,Bead, Latex,Beads, Latex,Latex Bead,Latex Particle,Latex Sphere,Microbead,Microsphere,Particle, Latex,Particles, Latex,Sphere, Latex,Spheres, Latex
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002536 Cerebral Arteries The arterial blood vessels supplying the CEREBRUM. Arteries, Cerebral,Artery, Cerebral,Cerebral Artery
D002560 Cerebrovascular Circulation The circulation of blood through the BLOOD VESSELS of the BRAIN. Brain Blood Flow,Regional Cerebral Blood Flow,Cerebral Blood Flow,Cerebral Circulation,Cerebral Perfusion Pressure,Circulation, Cerebrovascular,Blood Flow, Brain,Blood Flow, Cerebral,Brain Blood Flows,Cerebral Blood Flows,Cerebral Circulations,Cerebral Perfusion Pressures,Circulation, Cerebral,Flow, Brain Blood,Flow, Cerebral Blood,Perfusion Pressure, Cerebral,Pressure, Cerebral Perfusion
D006706 Homeostasis The processes whereby the internal environment of an organism tends to remain balanced and stable. Autoregulation
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014661 Vasoconstriction The physiological narrowing of BLOOD VESSELS by contraction of the VASCULAR SMOOTH MUSCLE. Vasoconstrictions
D015536 Down-Regulation A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Down-Regulation,Down-Regulation (Physiology),Downregulation,Down Regulation,Down-Regulation, Receptor

Related Publications

Stacey A Reading, and Joseph E Brayden
July 1983, Fiziologicheskii zhurnal SSSR imeni I. M. Sechenova,
Stacey A Reading, and Joseph E Brayden
September 1975, Proceedings of the National Academy of Sciences of the United States of America,
Stacey A Reading, and Joseph E Brayden
April 2024, The Journal of physiology,
Stacey A Reading, and Joseph E Brayden
January 2011, International journal of vascular medicine,
Stacey A Reading, and Joseph E Brayden
January 1981, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
Stacey A Reading, and Joseph E Brayden
March 1988, Fiziologicheskii zhurnal SSSR imeni I. M. Sechenova,
Stacey A Reading, and Joseph E Brayden
January 1980, Advances in experimental medicine and biology,
Stacey A Reading, and Joseph E Brayden
October 1978, The Journal of clinical investigation,
Stacey A Reading, and Joseph E Brayden
January 1987, Advances in experimental medicine and biology,
Stacey A Reading, and Joseph E Brayden
September 1997, The Chinese journal of physiology,
Copied contents to your clipboard!