Effect of positive end-expiratory pressure on respiratory compliance in children with acute respiratory failure. 1991

Y Sivan, and T W Deakers, and C J Newth
Division of Pediatric Intensive Care, Childrens Hospital Los Angeles, CA 90027.

We studied the effect of positive end-expiratory pressure (PEEP) on the compliance of the respiratory system (Crs) in 25 children (age, 3 weeks to 10 years) requiring mechanical ventilation. Functional residual capacity (FRC) measurements were performed at 2 cm H2O increments, from 0 to 18 cm H2O of PEEP, and the FRC values were regressed versus PEEP. Static Crs, Crs/kg, and specific compliance (Crs/FRC) were calculated for each PEEP level. When FRC normality was reached Crs/kg improved in 15/25 (60%) patients but decreased in 2/25 (8%). Overall, Crs/kg increased from a mean +/- SE of 0.94 +/- 0.09 to 1.35 +/- 0.13 mL/cm H2O/kg (P = 0.003) and Crs/FRC from a mean +/- SE of 0.067 +/- 0.006 to 0.077 +/- 0.007 mL/cm H2O/mL (P = 0.057). The maximum compliance (mean Max Crs/kg, 1.56 +/- 0.12 mL/cm H2O/kg, and mean Max Crs/FRC, 0.089 +/- 0.005 mL/cm H2O/mL) was significantly higher than the compliance at the clinically chosen PEEP level and the compliance at the PEEP that normalized FRC. Maximum compliance was achieved within 4 cm H2O of the PEEP that normalized FRC. In 14/25 (60%) of cases the PEEP at maximum compliance coincided with the PEEP that resulted in FRC normalization. We concluded that static respiratory compliance improves in most (but not all) children with acute respiratory failure when FRC is normalized. Static respiratory compliance reaches maximum levels at PEEP values that are close (but not equal) to those that result in FRC normalization. Thus, assessment of the effect of PEEP on compliance is required in individual patients.

UI MeSH Term Description Entries
D007223 Infant A child between 1 and 23 months of age. Infants
D007231 Infant, Newborn An infant during the first 28 days after birth. Neonate,Newborns,Infants, Newborn,Neonates,Newborn,Newborn Infant,Newborn Infants
D008170 Lung Compliance The capability of the LUNGS to distend under pressure as measured by pulmonary volume change per unit pressure change. While not a complete description of the pressure-volume properties of the lung, it is nevertheless useful in practice as a measure of the comparative stiffness of the lung. (From Best & Taylor's Physiological Basis of Medical Practice, 12th ed, p562) Compliance, Lung,Compliances, Lung,Lung Compliances
D008297 Male Males
D011014 Pneumonia Infection of the lung often accompanied by inflammation. Experimental Lung Inflammation,Lobar Pneumonia,Lung Inflammation,Pneumonia, Lobar,Pneumonitis,Pulmonary Inflammation,Experimental Lung Inflammations,Inflammation, Experimental Lung,Inflammation, Lung,Inflammation, Pulmonary,Inflammations, Lung,Inflammations, Pulmonary,Lobar Pneumonias,Lung Inflammation, Experimental,Lung Inflammations,Lung Inflammations, Experimental,Pneumonias,Pneumonias, Lobar,Pneumonitides,Pulmonary Inflammations
D011175 Positive-Pressure Respiration A method of mechanical ventilation in which pressure is maintained to increase the volume of gas remaining in the lungs at the end of expiration, thus reducing the shunting of blood through the lungs and improving gas exchange. Positive End-Expiratory Pressure,Positive-Pressure Ventilation,End-Expiratory Pressure, Positive,End-Expiratory Pressures, Positive,Positive End Expiratory Pressure,Positive End-Expiratory Pressures,Positive Pressure Respiration,Positive Pressure Ventilation,Positive-Pressure Respirations,Positive-Pressure Ventilations,Pressure, Positive End-Expiratory,Pressures, Positive End-Expiratory,Respiration, Positive-Pressure,Respirations, Positive-Pressure,Ventilation, Positive-Pressure,Ventilations, Positive-Pressure
D011650 Pulmonary Alveoli Small polyhedral outpouchings along the walls of the alveolar sacs, alveolar ducts and terminal bronchioles through the walls of which gas exchange between alveolar air and pulmonary capillary blood takes place. Alveoli, Pulmonary,Alveolus, Pulmonary,Pulmonary Alveolus
D012127 Respiratory Distress Syndrome, Newborn A condition of the newborn marked by DYSPNEA with CYANOSIS, heralded by such prodromal signs as dilatation of the alae nasi, expiratory grunt, and retraction of the suprasternal notch or costal margins, mostly frequently occurring in premature infants, children of diabetic mothers, and infants delivered by cesarean section, and sometimes with no apparent predisposing cause. Infantile Respiratory Distress Syndrome,Neonatal Respiratory Distress Syndrome,Respiratory Distress Syndrome, Infant
D012128 Respiratory Distress Syndrome A syndrome characterized by progressive life-threatening RESPIRATORY INSUFFICIENCY in the absence of known LUNG DISEASES, usually following a systemic insult such as surgery or major TRAUMA. ARDS, Human,Acute Respiratory Distress Syndrome,Adult Respiratory Distress Syndrome,Pediatric Respiratory Distress Syndrome,Respiratory Distress Syndrome, Acute,Respiratory Distress Syndrome, Adult,Respiratory Distress Syndrome, Pediatric,Shock Lung,Distress Syndrome, Respiratory,Distress Syndromes, Respiratory,Human ARDS,Lung, Shock,Respiratory Distress Syndromes,Syndrome, Respiratory Distress
D012131 Respiratory Insufficiency Failure to adequately provide oxygen to cells of the body and to remove excess carbon dioxide from them. (Stedman, 25th ed) Acute Hypercapnic Respiratory Failure,Acute Hypoxemic Respiratory Failure,Hypercapnic Acute Respiratory Failure,Hypercapnic Respiratory Failure,Hypoxemic Acute Respiratory Failure,Hypoxemic Respiratory Failure,Respiratory Depression,Respiratory Failure,Ventilatory Depression,Depressions, Ventilatory,Failure, Hypercapnic Respiratory,Failure, Hypoxemic Respiratory,Failure, Respiratory,Hypercapnic Respiratory Failures,Hypoxemic Respiratory Failures,Respiratory Failure, Hypercapnic,Respiratory Failure, Hypoxemic,Respiratory Failures

Related Publications

Y Sivan, and T W Deakers, and C J Newth
November 1986, Critical care medicine,
Y Sivan, and T W Deakers, and C J Newth
January 1980, Biology of the neonate,
Y Sivan, and T W Deakers, and C J Newth
August 1988, Pediatric research,
Y Sivan, and T W Deakers, and C J Newth
December 1979, La Nouvelle presse medicale,
Y Sivan, and T W Deakers, and C J Newth
January 1988, Critical care medicine,
Y Sivan, and T W Deakers, and C J Newth
November 1989, Critical care medicine,
Y Sivan, and T W Deakers, and C J Newth
December 1981, The American review of respiratory disease,
Copied contents to your clipboard!