| D010446 |
Peptide Fragments |
Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. |
Peptide Fragment,Fragment, Peptide,Fragments, Peptide |
|
| D004247 |
DNA |
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). |
DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA |
|
| D000067956 |
Adenylyl Cyclase Inhibitors |
Compounds that bind to and inhibit the action of ADENYLYL CYCLASES. |
Adenylate Cyclase Inhibitors,Cyclase Inhibitors, Adenylate,Cyclase Inhibitors, Adenylyl,Inhibitors, Adenylate Cyclase,Inhibitors, Adenylyl Cyclase |
|
| D000262 |
Adenylyl Cyclases |
Enzymes of the lyase class that catalyze the formation of CYCLIC AMP and pyrophosphate from ATP. |
Adenyl Cyclase,Adenylate Cyclase,3',5'-cyclic AMP Synthetase,Adenylyl Cyclase,3',5' cyclic AMP Synthetase,AMP Synthetase, 3',5'-cyclic,Cyclase, Adenyl,Cyclase, Adenylate,Cyclase, Adenylyl,Cyclases, Adenylyl,Synthetase, 3',5'-cyclic AMP |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D015293 |
Transducin |
A heterotrimeric GTP-binding protein that mediates the light activation signal from photolyzed rhodopsin to cyclic GMP phosphodiesterase and is pivotal in the visual excitation process. Activation of rhodopsin on the outer membrane of rod and cone cells causes GTP to bind to transducin followed by dissociation of the alpha subunit-GTP complex from the beta/gamma subunits of transducin. The alpha subunit-GTP complex activates the cyclic GMP phosphodiesterase which catalyzes the hydrolysis of cyclic GMP to 5'-GMP. This leads to closure of the sodium and calcium channels and therefore hyperpolarization of the rod cells. |
G-Protein, Inhibitory Gt,Gt, Transducin G-Protein,alpha-Transducin,beta-Transducin,gamma-Transducin,Transducin G-Protein (Gt),Transducin, alpha Subunit,Transducin, beta Subunit,Transducin, gamma Subunit,G Protein, Inhibitory Gt,G-Protein Gt, Transducin,Gt G-Protein, Inhibitory,Gt, Transducin G Protein,Inhibitory Gt G-Protein,Transducin G-Protein Gt,alpha Subunit Transducin,alpha Transducin,beta Subunit Transducin,beta Transducin,gamma Subunit Transducin,gamma Transducin |
|
| D019204 |
GTP-Binding Proteins |
Regulatory proteins that act as molecular switches. They control a wide range of biological processes including: receptor signaling, intracellular signal transduction pathways, and protein synthesis. Their activity is regulated by factors that control their ability to bind to and hydrolyze GTP to GDP. EC 3.6.1.-. |
G-Proteins,GTP-Regulatory Proteins,Guanine Nucleotide Regulatory Proteins,G-Protein,GTP-Binding Protein,GTP-Regulatory Protein,Guanine Nucleotide Coupling Protein,G Protein,G Proteins,GTP Binding Protein,GTP Binding Proteins,GTP Regulatory Protein,GTP Regulatory Proteins,Protein, GTP-Binding,Protein, GTP-Regulatory,Proteins, GTP-Binding,Proteins, GTP-Regulatory |
|