Mouse model mimics multiple sclerosis in the clinico-radiological paradox. 2007

Jens Wuerfel, and Eva Tysiak, and Timour Prozorovski, and Maureen Smyth, and Susanne Mueller, and Joerg Schnorr, and Matthias Taupitz, and Frauke Zipp
Cecilie-Vogt-Clinic for Molecular Neurology, Charité - University Medicine Berlin, and Max-Delbrueck-Center for Molecular Medicine, Germany.

The value of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, in deriving novel diagnostic and therapeutic input has been subject to recent debate. This study is the first to report a disseminated distribution of plaques including cranial nerves, prior to or at early stages of disease in murine adoptive transfer EAE, irrespective of the development of clinical symptoms. We induced EAE by adoptive proteolipid protein-specific T-cell transfer in 26 female SJL/J mice, and applied high-field-strength magnetic resonance imaging (MRI) scans longitudinally, assessing blood-brain barrier (BBB) disruption by gadopentate dimeglumine enhancement. We visualized inflammatory nerve injury by gadofluorine M accumulation, and phagocytic cells in inflamed tissue by very small anionic iron oxide particles (VSOP-C184). MRI was correlated with immunohistological sections. In this study, we discovered very early BBB breakdown of white and grey brain matter in 25 mice; one mouse developed exclusively spinal cord inflammation. Widely disseminated contrast-enhancing lesions preceded the onset of disease in 10 animals. Such lesions were present despite the absence of any clinical disease formation in four mice, and coincided with the first detectable symptoms in others. Cranial nerves, predominantly the optic and trigeminal nerves, showed signal intensity changes in nuclei and fascicles of 14 mice. At all sites of MRI lesions we detected cellular infiltrates on corresponding histological sections. The discrepancy between the disease burden visualized by MRI and the extent of disability indeed mimics the human clinico-radiological paradox. MRI should therefore be implemented into evaluational in vivo routines of future therapeutic EAE studies.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D009103 Multiple Sclerosis An autoimmune disorder mainly affecting young adults and characterized by destruction of myelin in the central nervous system. Pathologic findings include multiple sharply demarcated areas of demyelination throughout the white matter of the central nervous system. Clinical manifestations include visual loss, extra-ocular movement disorders, paresthesias, loss of sensation, weakness, dysarthria, spasticity, ataxia, and bladder dysfunction. The usual pattern is one of recurrent attacks followed by partial recovery (see MULTIPLE SCLEROSIS, RELAPSING-REMITTING), but acute fulminating and chronic progressive forms (see MULTIPLE SCLEROSIS, CHRONIC PROGRESSIVE) also occur. (Adams et al., Principles of Neurology, 6th ed, p903) MS (Multiple Sclerosis),Multiple Sclerosis, Acute Fulminating,Sclerosis, Disseminated,Disseminated Sclerosis,Sclerosis, Multiple
D009942 Organometallic Compounds A class of compounds of the type R-M, where a C atom is joined directly to any other element except H, C, N, O, F, Cl, Br, I, or At. (Grant & Hackh's Chemical Dictionary, 5th ed) Metallo-Organic Compound,Metallo-Organic Compounds,Metalloorganic Compound,Organometallic Compound,Metalloorganic Compounds,Compound, Metallo-Organic,Compound, Metalloorganic,Compound, Organometallic,Compounds, Metallo-Organic,Compounds, Metalloorganic,Compounds, Organometallic,Metallo Organic Compound,Metallo Organic Compounds
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D011859 Radiography Examination of any part of the body for diagnostic purposes by means of X-RAYS or GAMMA RAYS, recording the image on a sensitized surface (such as photographic film). Radiology, Diagnostic X-Ray,Roentgenography,X-Ray, Diagnostic,Diagnostic X-Ray,Diagnostic X-Ray Radiology,X-Ray Radiology, Diagnostic,Diagnostic X Ray,Diagnostic X Ray Radiology,Diagnostic X-Rays,Radiology, Diagnostic X Ray,X Ray Radiology, Diagnostic,X Ray, Diagnostic,X-Rays, Diagnostic
D001812 Blood-Brain Barrier Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue. Brain-Blood Barrier,Hemato-Encephalic Barrier,Barrier, Blood-Brain,Barrier, Brain-Blood,Barrier, Hemato-Encephalic,Barriers, Blood-Brain,Barriers, Brain-Blood,Barriers, Hemato-Encephalic,Blood Brain Barrier,Blood-Brain Barriers,Brain Blood Barrier,Brain-Blood Barriers,Hemato Encephalic Barrier,Hemato-Encephalic Barriers
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons

Related Publications

Jens Wuerfel, and Eva Tysiak, and Timour Prozorovski, and Maureen Smyth, and Susanne Mueller, and Joerg Schnorr, and Matthias Taupitz, and Frauke Zipp
January 2017, F1000Research,
Jens Wuerfel, and Eva Tysiak, and Timour Prozorovski, and Maureen Smyth, and Susanne Mueller, and Joerg Schnorr, and Matthias Taupitz, and Frauke Zipp
June 2002, Current opinion in neurology,
Jens Wuerfel, and Eva Tysiak, and Timour Prozorovski, and Maureen Smyth, and Susanne Mueller, and Joerg Schnorr, and Matthias Taupitz, and Frauke Zipp
May 2021, European journal of neurology,
Jens Wuerfel, and Eva Tysiak, and Timour Prozorovski, and Maureen Smyth, and Susanne Mueller, and Joerg Schnorr, and Matthias Taupitz, and Frauke Zipp
October 2012, Journal of neurology,
Jens Wuerfel, and Eva Tysiak, and Timour Prozorovski, and Maureen Smyth, and Susanne Mueller, and Joerg Schnorr, and Matthias Taupitz, and Frauke Zipp
January 2018, Annals of clinical and translational neurology,
Jens Wuerfel, and Eva Tysiak, and Timour Prozorovski, and Maureen Smyth, and Susanne Mueller, and Joerg Schnorr, and Matthias Taupitz, and Frauke Zipp
April 2014, Multiple sclerosis (Houndmills, Basingstoke, England),
Jens Wuerfel, and Eva Tysiak, and Timour Prozorovski, and Maureen Smyth, and Susanne Mueller, and Joerg Schnorr, and Matthias Taupitz, and Frauke Zipp
January 2023, Arquivos de neuro-psiquiatria,
Jens Wuerfel, and Eva Tysiak, and Timour Prozorovski, and Maureen Smyth, and Susanne Mueller, and Joerg Schnorr, and Matthias Taupitz, and Frauke Zipp
December 2019, Cortex; a journal devoted to the study of the nervous system and behavior,
Jens Wuerfel, and Eva Tysiak, and Timour Prozorovski, and Maureen Smyth, and Susanne Mueller, and Joerg Schnorr, and Matthias Taupitz, and Frauke Zipp
June 2014, Investigative ophthalmology & visual science,
Jens Wuerfel, and Eva Tysiak, and Timour Prozorovski, and Maureen Smyth, and Susanne Mueller, and Joerg Schnorr, and Matthias Taupitz, and Frauke Zipp
January 2006, Advances in neurology,
Copied contents to your clipboard!