Lateral hypothalamic orexin neurons are critically involved in learning to associate an environment with morphine reward. 2007

Glenda C Harris, and Mathieu Wimmer, and Jovita F Randall-Thompson, and Gary Aston-Jones
Department of Psychiatry, University of Pennsylvania, Translational Research Labs/3403, 125 S 31st Street, Philadelphia, PA 19104, United States. glenda.harris@crg.es

Previously, we reported that lateral hypothalamic (LH) orexin neurons are stimulated in proportion to the preference shown for reward-associated cues during conditioned place preference (CPP) testing. Here, we examine for the first time the role of these neurons in the acquisition of morphine CPP. Results show that LH orexin neurons, but not those in the perifornical area (PFA), are stimulated during conditioning when morphine is given in a novel drug-paired environment (CPP compartment) but not when given in the home cage, nor when saline was given in the CPP environment. Furthermore, bilateral excitotoxic lesions of the LH orexin area completely blocked the acquisition of morphine CPP. Lesions that spared LH orexin neurons had no effect. Orexin neurons in the LH project to the ventral tegmental area (VTA), an area important in the acquisition of morphine CPP. Therefore, we investigated the importance of the LH orexin connection to the VTA in the acquisition of a morphine CPP using a disconnection technique involving a unilateral excitotoxic lesion of LH orexin neurons and contralateral blockade of VTA orexin receptors. Results indicated that a unilateral LH orexin lesion together with a microinjection of the orexin A antagonist (SB 334867) into the contralateral VTA prior to each morphine-pairing session was sufficient to block the development of a morphine CPP. Either of these treatments by themselves was not sufficient to block CPP development. These results demonstrate the importance of LH orexin neurons and their projections to the VTA in the formation of associations between environmental cues and drug reward.

UI MeSH Term Description Entries
D007026 Hypothalamic Area, Lateral Area in the hypothalamus bounded medially by the mammillothalamic tract and the anterior column of the FORNIX (BRAIN). The medial edge of the INTERNAL CAPSULE and the subthalamic region form its lateral boundary. It contains the lateral hypothalamic nucleus, tuberomammillary nucleus, lateral tuberal nuclei, and fibers of the MEDIAL FOREBRAIN BUNDLE. Lateral Hypothalamic Area,Lateral Hypothalamic Nucleus,Tuberomammillary Nucleus,Accessory Nucleus of the Ventral Horn,Area Hypothalamica Lateralis,Area Lateralis Hypothalami,Lateral Hypothalamus,Lateral Tuberal Nuclei,Lateral Tuberal Nucleus,Area Hypothalamica Laterali,Area Lateralis Hypothalamus,Area, Lateral Hypothalamic,Areas, Lateral Hypothalamic,Hypothalami, Area Lateralis,Hypothalamic Areas, Lateral,Hypothalamic Nucleus, Lateral,Hypothalamica Laterali, Area,Hypothalamica Lateralis, Area,Hypothalamus, Area Lateralis,Hypothalamus, Lateral,Lateral Hypothalamic Areas,Laterali, Area Hypothalamica,Lateralis Hypothalami, Area,Lateralis Hypothalamus, Area,Lateralis, Area Hypothalamica,Nuclei, Lateral Tuberal,Nucleus, Lateral Hypothalamic,Nucleus, Lateral Tuberal,Nucleus, Tuberomammillary,Tuberal Nuclei, Lateral,Tuberal Nucleus, Lateral
D008297 Male Males
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D009294 Narcotics Agents that induce NARCOSIS. Narcotics include agents that cause somnolence or induced sleep (STUPOR); natural or synthetic derivatives of OPIUM or MORPHINE or any substance that has such effects. They are potent inducers of ANALGESIA and OPIOID-RELATED DISORDERS. Analgesics, Narcotic,Narcotic Analgesics,Narcotic,Narcotic Effect,Narcotic Effects,Effect, Narcotic,Effects, Narcotic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D003214 Conditioning, Classical Learning that takes place when a conditioned stimulus is paired with an unconditioned stimulus. Reflex, Conditioned,Classical Conditioning,Classical Conditionings,Conditioned Reflex,Conditionings, Classical
D004777 Environment The external elements and conditions which surround, influence, and affect the life and development of an organism or population. Environmental Impact,Environmental Impacts,Impact, Environmental,Impacts, Environmental,Environments
D000068797 Orexins Neuropeptide hormones that play a role in regulating a variety of behavioral and physiological processes in response to motivational stimuli. Hypocretin,Orexin,Hypocretin-1,Hypocretin-2,Hypocretins,Orexin-A,Orexin-B,Hypocretin 1,Hypocretin 2,Orexin A,Orexin B
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses

Related Publications

Glenda C Harris, and Mathieu Wimmer, and Jovita F Randall-Thompson, and Gary Aston-Jones
November 2017, Neuroscience letters,
Glenda C Harris, and Mathieu Wimmer, and Jovita F Randall-Thompson, and Gary Aston-Jones
January 2009, Neuropharmacology,
Glenda C Harris, and Mathieu Wimmer, and Jovita F Randall-Thompson, and Gary Aston-Jones
March 2012, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Glenda C Harris, and Mathieu Wimmer, and Jovita F Randall-Thompson, and Gary Aston-Jones
February 2010, Brain research,
Glenda C Harris, and Mathieu Wimmer, and Jovita F Randall-Thompson, and Gary Aston-Jones
January 2012, PloS one,
Glenda C Harris, and Mathieu Wimmer, and Jovita F Randall-Thompson, and Gary Aston-Jones
September 2014, Molecular and cellular neurosciences,
Glenda C Harris, and Mathieu Wimmer, and Jovita F Randall-Thompson, and Gary Aston-Jones
January 2022, Frontiers in molecular neuroscience,
Glenda C Harris, and Mathieu Wimmer, and Jovita F Randall-Thompson, and Gary Aston-Jones
May 1983, Brain research,
Glenda C Harris, and Mathieu Wimmer, and Jovita F Randall-Thompson, and Gary Aston-Jones
July 2017, Current biology : CB,
Glenda C Harris, and Mathieu Wimmer, and Jovita F Randall-Thompson, and Gary Aston-Jones
September 2018, Endocrinology,
Copied contents to your clipboard!