Essential arginyl residues in mitochondrial adenosine triphosphatase. 1976

F Marcus, and S M Schuster, and H A Lardy

Treatment of either beef heart or rat liver mitochondrial ATPase with the arginine reagent, 2,3-butanedione, resulted in enzyme inactivation. The reaction followed pseudo-first order kinetics until 90 to 95% of the enzyme had been inactivated, and prolonged incubation with butanedione resulted in complete inactivation. When the modification reaction was performed in the presence of ATP, the rate of inactivation was significantly decreased. The kinetics of inactivation indicates that the reaction of 1 molecule of reagent per active site of beef heart mitochondrial ATPase is necessary for inactivation. The loss of ATPase activity was also observed when submitochondrial particles were treated with butanedione. Studies with beef heart mitochondrial ATPase indicated that the inactivation was not due to enzyme dissociation into subunits. Kinetic studies with partially inactivated enzyme demonstrated that the Km values of ITP and of ATP in the presence of HCO3-were similar to the same constants for the control enzyme. When ATP was used as the substrate in the absence of anion activator, the partially inactivated enzyme still exhibited negative cooperativity. Inactivation was also observed when beef heart mitochondrial ATPase was treated with another arginine reagent, phenylglyoxal. The loss of ATPase activity was analyzed in terms of [14C]phenylglyoxal incorporation. From the present studies it is concluded that arginyl residues play an essential role in mitochondrial ATPase, probably at the hydrolytic site.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008931 Mitochondria, Muscle Mitochondria of skeletal and smooth muscle. It does not include myocardial mitochondria for which MITOCHONDRIA, HEART is available. Sarcosomes,Mitochondrion, Muscle,Muscle Mitochondria,Muscle Mitochondrion,Sarcosome
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011756 Diphosphates Inorganic salts of phosphoric acid that contain two phosphate groups. Diphosphate,Pyrophosphate Analog,Pyrophosphates,Pyrophosphate Analogs,Analog, Pyrophosphate
D002074 Butanones Derivatives of butanone, also known as methyl ethyl ketone (with structural formula CH3COC2H5).
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D000249 Adenosine Monophosphate Adenine nucleotide containing one phosphate group esterified to the sugar moiety in the 2'-, 3'-, or 5'-position. AMP,Adenylic Acid,2'-AMP,2'-Adenosine Monophosphate,2'-Adenylic Acid,5'-Adenylic Acid,Adenosine 2'-Phosphate,Adenosine 3'-Phosphate,Adenosine 5'-Phosphate,Adenosine Phosphate Dipotassium,Adenosine Phosphate Disodium,Phosphaden,2' Adenosine Monophosphate,2' Adenylic Acid,5' Adenylic Acid,5'-Phosphate, Adenosine,Acid, 2'-Adenylic,Acid, 5'-Adenylic,Adenosine 2' Phosphate,Adenosine 3' Phosphate,Adenosine 5' Phosphate,Dipotassium, Adenosine Phosphate,Disodium, Adenosine Phosphate,Monophosphate, 2'-Adenosine,Phosphate Dipotassium, Adenosine,Phosphate Disodium, Adenosine

Related Publications

F Marcus, and S M Schuster, and H A Lardy
February 1982, Biochimica et biophysica acta,
F Marcus, and S M Schuster, and H A Lardy
November 1978, The Journal of biological chemistry,
F Marcus, and S M Schuster, and H A Lardy
September 1975, Biochemical and biophysical research communications,
F Marcus, and S M Schuster, and H A Lardy
June 1978, Biochemical and biophysical research communications,
F Marcus, and S M Schuster, and H A Lardy
April 1978, Biochemical and biophysical research communications,
F Marcus, and S M Schuster, and H A Lardy
October 1977, Journal of biochemistry,
F Marcus, and S M Schuster, and H A Lardy
September 1975, Biochemical and biophysical research communications,
F Marcus, and S M Schuster, and H A Lardy
December 1976, Biochemical and biophysical research communications,
F Marcus, and S M Schuster, and H A Lardy
August 1976, Biochemistry,
F Marcus, and S M Schuster, and H A Lardy
July 1974, Biochemistry,
Copied contents to your clipboard!