| D009474 |
Neurons |
The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. |
Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron |
|
| D002352 |
Carrier Proteins |
Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. |
Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier |
|
| D000072233 |
Homer Scaffolding Proteins |
Homer proteins belong to a family of adaptor and scaffold proteins which include Homer1, Homer2 and Homer3. Homer1 and Homer2 play a role in the regulation of calcium homeostasis, whereas Homer3 functions in stimulating changes in actin dynamics in neurons and T-cells. Homer proteins are best known as scaffold proteins at the post-synaptic density where they facilitate synaptic signaling. They function as a molecular switch in metabotropic glutamate receptor (MGluR) signaling, and are associated with human Fragile X syndrome. |
Homer Protein,Homer 1,Homer 1 Proteins,Homer 1C,Homer 1C Proteins,Homer 1a,Homer 2,Homer 2 Proteins,Homer 3,Homer 3 Proteins,Homer Proteins,Protein, Homer,Proteins, Homer,Proteins, Homer 1,Proteins, Homer 1C,Proteins, Homer 2,Proteins, Homer 3,Proteins, Homer Scaffolding,Scaffolding Proteins, Homer |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D015640 |
Ion Channel Gating |
The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability. |
Gating, Ion Channel,Gatings, Ion Channel,Ion Channel Gatings |
|
| D050052 |
TRPC Cation Channels |
A subgroup of TRP cation channels that contain 3-4 ANKYRIN REPEAT DOMAINS and a conserved C-terminal domain. Members are highly expressed in the CENTRAL NERVOUS SYSTEM. Selectivity for calcium over sodium ranges from 0.5 to 10. |
Transient Receptor Potential Cation Channel Subfamily C,Transient Receptor Potential Channels, Type C,Cation Channels, TRPC,Channels, TRPC Cation |
|
| D051379 |
Mice |
The common name for the genus Mus. |
Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus |
|
| D019837 |
Ryanodine Receptor Calcium Release Channel |
A tetrameric calcium release channel in the SARCOPLASMIC RETICULUM membrane of SMOOTH MUSCLE CELLS, acting oppositely to SARCOPLASMIC RETICULUM CALCIUM-TRANSPORTING ATPASES. It is important in skeletal and cardiac excitation-contraction coupling and studied by using RYANODINE. Abnormalities are implicated in CARDIAC ARRHYTHMIAS and MUSCULAR DISEASES. |
Calcium-Ryanodine Receptor Complex,RyR1,Ryanodine Receptor 1,Ryanodine Receptor 2,Ryanodine Receptor 3,Ryanodine Receptors,Ca Release Channel-Ryanodine Receptor,Receptor, Ryanodine,RyR2,RyR3,Ryanodine Receptor,Ca Release Channel Ryanodine Receptor,Calcium Ryanodine Receptor Complex,Complex, Calcium-Ryanodine Receptor,Receptor 1, Ryanodine,Receptor 2, Ryanodine,Receptor 3, Ryanodine,Receptor Complex, Calcium-Ryanodine,Receptors, Ryanodine |
|
| D020013 |
Calcium Signaling |
Signal transduction mechanisms whereby calcium mobilization (from outside the cell or from intracellular storage pools) to the cytoplasm is triggered by external stimuli. Calcium signals are often seen to propagate as waves, oscillations, spikes, sparks, or puffs. The calcium acts as an intracellular messenger by activating calcium-responsive proteins. |
Calcium Oscillations,Calcium Waves,Calcium Puffs,Calcium Sparks,Calcium Spikes,Calcium Oscillation,Calcium Puff,Calcium Signalings,Calcium Spark,Calcium Spike,Calcium Wave,Oscillation, Calcium,Oscillations, Calcium,Puff, Calcium,Puffs, Calcium,Signaling, Calcium,Signalings, Calcium,Spark, Calcium,Sparks, Calcium,Spike, Calcium,Spikes, Calcium,Wave, Calcium,Waves, Calcium |
|
| D020710 |
RGS Proteins |
A large family of evolutionarily conserved proteins that function as negative regulators of HETEROTRIMERIC GTP-BINDING PROTEINS. RGS PROTEINS act by increasing the GTPase activity of the G alpha subunit of a heterotrimeric GTP-binding protein, causing it to revert to its inactive (GDP-bound) form. |
Regulators of G-Protein Signaling Proteins,RGS Protein (G-Protein Signaling),Regulators of G Protein Signaling Proteins |
|