Detection of West Nile virus in the tissues of specific pathogen free chickens and serological response to laboratory infection: a comparative study. 2007

L P Phipps, and R E Gough, and Vanessa Ceeraz, and W J Cox, and I H Brown
Virology Department, VLA Weybridge, Addlestone, Surrey, UK. l.p.phipps@vla.defra.gsi.gov.uk

Using an isolate of West Nile virus (WNV) from lineage 1 (Goose/Israel 1998), groups of specific pathogen free chickens were experimentally infected via the subcutaneous or intravenous routes. To evaluate the relative efficiency of detecting the virus in the infected chickens, samples from a range of tissues and organs were examined by virus isolation tests in tissue culture, including Vero, primary chicken embryo liver and fibroblast cells, and polymerase chain reaction (PCR) analyses. Additionally, in order to investigate the serological response of the chickens and produce WNV monospecific antibodies, serum samples were collected from the birds during the trial and analysed for antibodies by virus neutralization (VN) and the plaque-reduction neutralization test (PRNT). No clinical signs or gross pathological changes were seen in any of the inoculated chickens throughout the study. The nested PCR used in the study appeared to be significantly more sensitive at detecting the presence of the virus in both the tissues and the inoculated Vero cell cultures compared with the detection of gross cytopathic changes as observed in infected Vero cell culture. No cytopathic changes were seen in the inoculated avian cell cultures. Following primary inoculation of the chickens there was a weak antibody response 15 days post-inoculation. However, following re-inoculation with inactivated WNV and adjuvant there was a substantial increase in the neutralizing antibody titres when tested 2 weeks later. The results obtained suggested that the PRNT was more sensitive than the conventional VN test. Based on detection of virus and serology there was no evidence of viral transmission to the close contact controls. It can be concluded that the PCR used in this study was more sensitive than virus isolation for the detection of WNV while the PRNT also appeared more sensitive than the conventional VN test.

UI MeSH Term Description Entries
D007753 Laboratories Facilities equipped to carry out investigative procedures. Laboratory
D010948 Viral Plaque Assay Method for measuring viral infectivity and multiplication in CULTURED CELLS. Clear lysed areas or plaques develop as the VIRAL PARTICLES are released from the infected cells during incubation. With some VIRUSES, the cells are killed by a cytopathic effect; with others, the infected cells are not killed but can be detected by their hemadsorptive ability. Sometimes the plaque cells contain VIRAL ANTIGENS which can be measured by IMMUNOFLUORESCENCE. Bacteriophage Plaque Assay,Assay, Bacteriophage Plaque,Assay, Viral Plaque,Assays, Bacteriophage Plaque,Assays, Viral Plaque,Bacteriophage Plaque Assays,Plaque Assay, Bacteriophage,Plaque Assay, Viral,Plaque Assays, Bacteriophage,Plaque Assays, Viral,Viral Plaque Assays
D011201 Poultry Diseases Diseases of birds which are raised as a source of meat or eggs for human consumption and are usually found in barnyards, hatcheries, etc. The concept is differentiated from BIRD DISEASES which is for diseases of birds not considered poultry and usually found in zoos, parks, and the wild. Disease, Poultry,Diseases, Poultry,Poultry Disease
D002522 Chlorocebus aethiops A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research. African Green Monkey,Cercopithecus aethiops,Cercopithecus griseoviridis,Cercopithecus griseus,Cercopithecus pygerythrus,Cercopithecus sabeus,Cercopithecus tantalus,Chlorocebus cynosuros,Chlorocebus cynosurus,Chlorocebus pygerythrus,Green Monkey,Grivet Monkey,Lasiopyga weidholzi,Malbrouck,Malbrouck Monkey,Monkey, African Green,Monkey, Green,Monkey, Grivet,Monkey, Vervet,Savanah Monkey,Vervet Monkey,Savannah Monkey,African Green Monkey,Chlorocebus cynosuro,Green Monkey, African,Green Monkeys,Grivet Monkeys,Malbrouck Monkeys,Malbroucks,Monkey, Malbrouck,Monkey, Savanah,Monkey, Savannah,Savannah Monkeys,Vervet Monkeys
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D003588 Cytopathogenic Effect, Viral Visible morphologic changes in cells infected with viruses. It includes shutdown of cellular RNA and protein synthesis, cell fusion, release of lysosomal enzymes, changes in cell membrane permeability, diffuse changes in intracellular structures, presence of viral inclusion bodies, and chromosomal aberrations. It excludes malignant transformation, which is CELL TRANSFORMATION, VIRAL. Viral cytopathogenic effects provide a valuable method for identifying and classifying the infecting viruses. Cytopathic Effect, Viral,Viral Cytopathogenic Effect,Cytopathic Effects, Viral,Cytopathogenic Effects, Viral,Effect, Viral Cytopathic,Effect, Viral Cytopathogenic,Effects, Viral Cytopathic,Effects, Viral Cytopathogenic,Viral Cytopathic Effect,Viral Cytopathic Effects,Viral Cytopathogenic Effects
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012698 Serologic Tests Diagnostic procedures involving immunoglobulin reactions. Serodiagnosis,Serologic Test,Serological Tests,Test, Serologic,Tests, Serologic,Serodiagnoses,Serological Test,Test, Serological,Tests, Serological
D013047 Specific Pathogen-Free Organisms Animals or humans raised in the absence of a particular disease-causing virus or other microorganism. Less frequently plants are cultivated pathogen-free. Pathogen-Free Organisms,Specific Pathogen Free,Organism, Pathogen-Free,Organism, Specific Pathogen-Free,Organisms, Pathogen-Free,Organisms, Specific Pathogen-Free,Pathogen Free Organisms,Pathogen Free, Specific,Pathogen Frees, Specific,Pathogen-Free Organism,Pathogen-Free Organism, Specific,Pathogen-Free Organisms, Specific,Specific Pathogen Free Organisms,Specific Pathogen-Free Organism
D014709 Vero Cells A CELL LINE derived from the kidney of the African green (vervet) monkey, (CHLOROCEBUS AETHIOPS) used primarily in virus replication studies and plaque assays. Cell, Vero,Cells, Vero,Vero Cell

Related Publications

L P Phipps, and R E Gough, and Vanessa Ceeraz, and W J Cox, and I H Brown
January 1996, The Journal of the Egyptian Public Health Association,
L P Phipps, and R E Gough, and Vanessa Ceeraz, and W J Cox, and I H Brown
July 2007, BMC infectious diseases,
L P Phipps, and R E Gough, and Vanessa Ceeraz, and W J Cox, and I H Brown
January 2013, PLoS neglected tropical diseases,
L P Phipps, and R E Gough, and Vanessa Ceeraz, and W J Cox, and I H Brown
January 2015, Journal of immunoassay & immunochemistry,
L P Phipps, and R E Gough, and Vanessa Ceeraz, and W J Cox, and I H Brown
April 2017, Applied microbiology and biotechnology,
L P Phipps, and R E Gough, and Vanessa Ceeraz, and W J Cox, and I H Brown
August 2000, The Journal of general virology,
L P Phipps, and R E Gough, and Vanessa Ceeraz, and W J Cox, and I H Brown
January 2023, Journal of vector borne diseases,
L P Phipps, and R E Gough, and Vanessa Ceeraz, and W J Cox, and I H Brown
January 2019, PloS one,
L P Phipps, and R E Gough, and Vanessa Ceeraz, and W J Cox, and I H Brown
September 2006, Virology journal,
L P Phipps, and R E Gough, and Vanessa Ceeraz, and W J Cox, and I H Brown
June 2004, MLO: medical laboratory observer,
Copied contents to your clipboard!