An evaluation of semiconductor and ionization chamber detectors for diagnostic x-ray dosimetry measurements. 2007

C J Martin
Health Physics, Department of Clinical Physics and Bio-Engineering, Gartnavel Royal Hospital, Glasgow G12 0XH, UK. colin.martin@northglasgow.scot.nhs.uk

Dosemeters for performance testing of x-ray equipment may utilize semiconductor technology or ionization chambers (ICs). Semiconductor dosemeters incorporate several elements into the detectors from which compensation for variations in response with photon energy is derived. The design of the detectors influences their response with angle and this is different from that of ICs. The responses of semiconductor detectors (SDs) and ICs to x-ray beams with a variety of radiation qualities have been measured in order to assess differences in response. Measurements have been made with experimental arrangements simulating use of the detectors in performance testing of digital radiography and fluoroscopy equipment. Results show that differences in photon energy responses between the detectors are small, but because ICs are sensitive to radiation incident from all angles, they record more scattered radiation than SDs. Implications of differences in detector responses are discussed and recommendations made about their use. SDs are more appropriate for measurements of image receptor doses and are recommended for setting up automatic exposure control devices for digital radiography. ICs are suitable for assessment of patient entrance surface dose rate measurements. Correction factors that could be applied to allow comparisons between measurements with different dosemeters are proposed.

UI MeSH Term Description Entries
D011829 Radiation Dosage The amount of radiation energy that is deposited in a unit mass of material, such as tissues of plants or animal. In RADIOTHERAPY, radiation dosage is expressed in gray units (Gy). In RADIOLOGIC HEALTH, the dosage is expressed by the product of absorbed dose (Gy) and quality factor (a function of linear energy transfer), and is called radiation dose equivalent in sievert units (Sv). Sievert Units,Dosage, Radiation,Gray Units,Gy Radiation,Sv Radiation Dose Equivalent,Dosages, Radiation,Radiation Dosages,Units, Gray,Units, Sievert
D011839 Radiation, Ionizing ELECTROMAGNETIC RADIATION or particle radiation (high energy ELEMENTARY PARTICLES) capable of directly or indirectly producing IONS in its passage through matter. The wavelengths of ionizing electromagnetic radiation are equal to or smaller than those of short (far) ultraviolet radiation and include gamma and X-rays. Ionizing Radiation,Ionizing Radiations,Radiations, Ionizing
D011859 Radiography Examination of any part of the body for diagnostic purposes by means of X-RAYS or GAMMA RAYS, recording the image on a sensitized surface (such as photographic film). Radiology, Diagnostic X-Ray,Roentgenography,X-Ray, Diagnostic,Diagnostic X-Ray,Diagnostic X-Ray Radiology,X-Ray Radiology, Diagnostic,Diagnostic X Ray,Diagnostic X Ray Radiology,Diagnostic X-Rays,Radiology, Diagnostic X Ray,X Ray Radiology, Diagnostic,X Ray, Diagnostic,X-Rays, Diagnostic
D011874 Radiometry The measurement of radiation by photography, as in x-ray film and film badge, by Geiger-Mueller tube, and by SCINTILLATION COUNTING. Geiger-Mueller Counters,Nuclear Track Detection,Radiation Dosimetry,Dosimetry, Radiation,Geiger Counter,Geiger-Mueller Counter Tube,Geiger-Mueller Probe,Geiger-Mueller Tube,Radiation Counter,Counter Tube, Geiger-Mueller,Counter Tubes, Geiger-Mueller,Counter, Geiger,Counter, Radiation,Counters, Geiger,Counters, Geiger-Mueller,Counters, Radiation,Detection, Nuclear Track,Dosimetries, Radiation,Geiger Counters,Geiger Mueller Counter Tube,Geiger Mueller Counters,Geiger Mueller Probe,Geiger Mueller Tube,Geiger-Mueller Counter Tubes,Geiger-Mueller Probes,Geiger-Mueller Tubes,Probe, Geiger-Mueller,Probes, Geiger-Mueller,Radiation Counters,Radiation Dosimetries,Tube, Geiger-Mueller,Tube, Geiger-Mueller Counter,Tubes, Geiger-Mueller,Tubes, Geiger-Mueller Counter
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D004867 Equipment Design Methods and patterns of fabricating machines and related hardware. Design, Equipment,Device Design,Medical Device Design,Design, Medical Device,Designs, Medical Device,Device Design, Medical,Device Designs, Medical,Medical Device Designs,Design, Device,Designs, Device,Designs, Equipment,Device Designs,Equipment Designs
D012542 Scattering, Radiation The diversion of RADIATION (thermal, electromagnetic, or nuclear) from its original path as a result of interactions or collisions with atoms, molecules, or larger particles in the atmosphere or other media. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Radiation Scattering,Radiation Scatterings,Scatterings, Radiation
D012666 Semiconductors Materials that have a limited and usually variable electrical conductivity. They are particularly useful for the production of solid-state electronic devices. Semiconductor
D012680 Sensitivity and Specificity Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) Specificity,Sensitivity,Specificity and Sensitivity
D014159 Transducers Any device or element which converts an input signal into an output signal of a different form. Examples include the microphone, phonographic pickup, loudspeaker, barometer, photoelectric cell, automobile horn, doorbell, and underwater sound transducer. (McGraw Hill Dictionary of Scientific and Technical Terms, 4th ed) Transducer
Copied contents to your clipboard!