Why does halothane relax cardiac muscle but contract malignant hyperthermic skeletal muscle? 1991

S T Ohnishi, and M Katsuoka
Philadelphia Biomedical Research Institute, King of Prussia, Pennsylvania 19406.

We have studied the question of the possible role of sarcoplasmic reticulum (SR) in the interaction of volatile anesthetics (such as halothane, enflurane and isoflurane) with muscle. We used two cardiac muscle models, i.e., isolated rat myocytes and Langendorff perfused rat hearts. We compared the results with those for skeletal muscle SR from rabbits, rats and pigs susceptible to malignant hyperthermia (MH). In both skeletal and cardiac muscle SR, volatile anesthetics enhanced the calcium release from the SR. In cardiac muscle, these agents are known to decrease contractility (negative inotropism). We found that caffeine, a well-known agent which releases calcium from the SR, also had a negative inotropic effect in cardiac muscle, raising the possibility of an unexpected link between the potentiation of calcium release and mechanism underlying the observed negative inotropism. Current understanding of anesthetic mechanisms does not include this possibility. We further found that both volatile anesthetics and caffeine decrease the content of calcium in the SR, suggesting that the increase of calcium permeability results in the decrease of calcium ions in the SR which are available for excitation-contraction (E-C) coupling. In MH-susceptible skeletal muscle, a similar increase in calcium permeability does not cause a decrease of contractility, but rather may contribute to a fatal syndrome of temperature increase provoked by abnormal contracture. This difference may be because in skeletal myoplasm calcium ions recycle internally, while in the cardiac muscle cell they are in dynamic equilibrium with extracellular calcium ions.

UI MeSH Term Description Entries
D008297 Male Males
D008305 Malignant Hyperthermia Rapid and excessive rise of temperature accompanied by muscular rigidity following general anesthesia. Hyperpyrexia, Malignant,Hyperthermia, Malignant,Malignant Hyperpyrexia,Anesthesia Related Hyperthermia,Hyperthermia of Anesthesia,Anesthesia Hyperthermia,Hyperthermia, Anesthesia Related,Malignant Hyperpyrexias
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation

Related Publications

S T Ohnishi, and M Katsuoka
August 1992, Research communications in chemical pathology and pharmacology,
S T Ohnishi, and M Katsuoka
October 1991, The American journal of physiology,
S T Ohnishi, and M Katsuoka
November 1978, FEBS letters,
S T Ohnishi, and M Katsuoka
January 1992, Journal of physiology, Paris,
S T Ohnishi, and M Katsuoka
January 1999, Biochemical and biophysical research communications,
S T Ohnishi, and M Katsuoka
March 1993, Biochemistry and molecular biology international,
S T Ohnishi, and M Katsuoka
October 2013, Circulation,
S T Ohnishi, and M Katsuoka
January 1997, European journal of applied physiology and occupational physiology,
S T Ohnishi, and M Katsuoka
January 1991, The International journal of biochemistry,
Copied contents to your clipboard!