Electrophysiological effects of haloperidol on isolated rabbit Purkinje fibers and guinea pigs papillary muscles under normal and simulated ischemia. 2007

Dong Yan, and Lu-feng Cheng, and Hong-Yan Song, and Subat Turdi, and Parhat Kerram
Department of Pharmacology, Xinjiang Medical University, Urumqi, China.

OBJECTIVE Overdoses of haloperidol are associated with major ventricular arrhythmias, cardiac conduction block, and sudden death. The aim of this experiment was to study the effect of haloperidol on the action potentials in cardiac Purkinje fibers and papillary muscles under normal and simulated ischemia conditions in rabbits and guinea pigs. METHODS Using the standard intracellular microelectrode technique, we examined the effects of haloperidol on the action potential parameters [action potential amplitude (APA), phase 0 maximum upstroke velocity (V(max)), action potential amplitude at 90% of repolarization (APD(90)), and effective refractory period (ERP)] in rabbit cardiac Purkinje fibers and guinea pig cardiac papillary cells, in which both tissues were under simulated ischemic conditions. RESULTS Under ischemic conditions, different concentrations of haloperidol depressed APA and prolonged APD(90) in a concentration-dependent manner in rabbit Purkinje fibers. Haloperidol (3 micromol/L) significantly depressed APA and prolonged APD(90), and from 1 micromol/L, haloperidol showed significant depression on V(max); ERP was not significantly affected. In guinea pig cardiac papillary muscles, the thresholds of significant reduction in APA, V(max), EPR, and APD(90) were 10, 0.3, 1, and 1 mumol/L, respectively, for haloperidol. CONCLUSIONS Compared with cardiac conductive tissues, papillary muscles were more sensitive to ischemic conditions. Under ischemia, haloperidol prolonged ERP and APD(90) in a concentration-dependent manner and precipitated the decrease in V(max) induced by ischemia. The shortening of ERP and APD(90) in papillary muscle action potentials may be inhibited by haloperidol.

UI MeSH Term Description Entries
D008297 Male Males
D010210 Papillary Muscles Conical muscular projections from the walls of the cardiac ventricles, attached to the cusps of the atrioventricular valves by the chordae tendineae. Muscle, Papillary,Muscles, Papillary,Papillary Muscle
D011690 Purkinje Fibers Modified cardiac muscle fibers composing the terminal portion of the heart conduction system. Purkinje Fiber,Fiber, Purkinje,Fibers, Purkinje
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D012032 Refractory Period, Electrophysiological The period of time following the triggering of an ACTION POTENTIAL when the CELL MEMBRANE has changed to an unexcitable state and is gradually restored to the resting (excitable) state. During the absolute refractory period no other stimulus can trigger a response. This is followed by the relative refractory period during which the cell gradually becomes more excitable and the stronger impulse that is required to illicit a response gradually lessens to that required during the resting state. Period, Neurologic Refractory,Periods, Neurologic Refractory,Refractory Period, Neurologic,Tetanic Fade,Vvedenskii Inhibition,Wedensky Inhibition,Inhibition, Vvedenskii,Inhibition, Wedensky,Neurologic Refractory Period,Neurologic Refractory Periods,Neuromuscular Fade,Neuromuscular Transmission Fade,Refractory Period, Neurological,Refractory Periods, Neurologic,Electrophysiological Refractory Period,Electrophysiological Refractory Periods,Fade, Neuromuscular,Fade, Neuromuscular Transmission,Fade, Tetanic,Neurological Refractory Period,Neurological Refractory Periods,Refractory Periods, Electrophysiological,Refractory Periods, Neurological,Transmission Fade, Neuromuscular
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006220 Haloperidol A phenyl-piperidinyl-butyrophenone that is used primarily to treat SCHIZOPHRENIA and other PSYCHOSES. It is also used in schizoaffective disorder, DELUSIONAL DISORDERS, ballism, and TOURETTE SYNDROME (a drug of choice) and occasionally as adjunctive therapy in INTELLECTUAL DISABILITY and the chorea of HUNTINGTON DISEASE. It is a potent antiemetic and is used in the treatment of intractable HICCUPS. (From AMA Drug Evaluations Annual, 1994, p279) Haldol
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Dong Yan, and Lu-feng Cheng, and Hong-Yan Song, and Subat Turdi, and Parhat Kerram
January 1989, General pharmacology,
Dong Yan, and Lu-feng Cheng, and Hong-Yan Song, and Subat Turdi, and Parhat Kerram
January 1986, Journal of cardiovascular pharmacology,
Dong Yan, and Lu-feng Cheng, and Hong-Yan Song, and Subat Turdi, and Parhat Kerram
January 1987, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
Dong Yan, and Lu-feng Cheng, and Hong-Yan Song, and Subat Turdi, and Parhat Kerram
October 1984, The Journal of pharmacology and experimental therapeutics,
Dong Yan, and Lu-feng Cheng, and Hong-Yan Song, and Subat Turdi, and Parhat Kerram
February 1981, Archives internationales de pharmacodynamie et de therapie,
Dong Yan, and Lu-feng Cheng, and Hong-Yan Song, and Subat Turdi, and Parhat Kerram
April 1988, Pharmacology & toxicology,
Dong Yan, and Lu-feng Cheng, and Hong-Yan Song, and Subat Turdi, and Parhat Kerram
May 2003, Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology,
Dong Yan, and Lu-feng Cheng, and Hong-Yan Song, and Subat Turdi, and Parhat Kerram
December 2004, Sheng li xue bao : [Acta physiologica Sinica],
Dong Yan, and Lu-feng Cheng, and Hong-Yan Song, and Subat Turdi, and Parhat Kerram
October 2003, Sheng li xue bao : [Acta physiologica Sinica],
Dong Yan, and Lu-feng Cheng, and Hong-Yan Song, and Subat Turdi, and Parhat Kerram
May 1996, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
Copied contents to your clipboard!