Biochemical characterization of MsbA from Pseudomonas aeruginosa. 2007

Hamed Ghanei, and Priyanka D Abeyrathne, and Joseph S Lam
Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.

Lipopolysaccharide of Pseudomonas aeruginosa is a major constituent of the outer membrane, and it is composed of three distinct regions: lipid A, core oligosaccharide, and O antigen. Lipid A and core oligosaccharides (OS) are synthesized and assembled at the cytoplasmic side of the inner membrane and then translocated to the periplasmic side of the membrane where lipid A-core becomes the acceptor of the O antigens. Here we show that MsbA encoded by pA4997 of the P. aeruginosa genome is a member of the ABC transporter family, but this protein has distinctive features when compared with other MsbA proteins. msbA is an essential gene in this organism since mutation in this gene is lethal to the bacterium. Disruption of the chromosomal msbA was achieved only when a functional copy of the gene was provided in trans. msbA from Escherichiacoli (msbA(Ec)) could not cross complement the msbA merodiploid cells of P. aeruginosa. MsbA was expressed and purified, and the kinetic of its ATPase activity is vastly different than that of MsbA(Ec). The activity of MsbA could be selectively stimulated by different truncated versions of core OS of P. aeruginosa LPS. Specifically, phosphate substituents in the lipid A-core are important for stimulating ATPase activity of MsbA. Expression of MsbA(Ec) but not MsbA(Pa) conferred resistance to erythromycin in P. aeruginosa.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D004917 Erythromycin A bacteriostatic antibiotic macrolide produced by Streptomyces erythreus. Erythromycin A is considered its major active component. In sensitive organisms, it inhibits protein synthesis by binding to 50S ribosomal subunits. This binding process inhibits peptidyl transferase activity and interferes with translocation of amino acids during translation and assembly of proteins. Erycette,Erymax,Erythromycin A,Erythromycin C,Erythromycin Lactate,Erythromycin Phosphate,Ilotycin,T-Stat,Lactate, Erythromycin,Phosphate, Erythromycin,T Stat,TStat
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D018528 ATP-Binding Cassette Transporters A family of MEMBRANE TRANSPORT PROTEINS that require ATP hydrolysis for the transport of substrates across membranes. The protein family derives its name from the ATP-binding domain found on the protein. ABC Transporter,ABC Transporters,ATP-Binding Cassette Transporter,ATP Binding Cassette Transporter,ATP Binding Cassette Transporters,Cassette Transporter, ATP-Binding,Transporter, ABC,Transporter, ATP-Binding Cassette,Transporters, ABC,Transporters, ATP-Binding Cassette
D024881 Drug Resistance, Bacterial The ability of bacteria to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance, Bacterial,Antibacterial Drug Resistance

Related Publications

Hamed Ghanei, and Priyanka D Abeyrathne, and Joseph S Lam
January 2001, Methods in enzymology,
Hamed Ghanei, and Priyanka D Abeyrathne, and Joseph S Lam
February 2015, Biochemistry,
Hamed Ghanei, and Priyanka D Abeyrathne, and Joseph S Lam
January 2015, PloS one,
Hamed Ghanei, and Priyanka D Abeyrathne, and Joseph S Lam
April 2020, Biochemical and biophysical research communications,
Hamed Ghanei, and Priyanka D Abeyrathne, and Joseph S Lam
January 2002, Microbial drug resistance (Larchmont, N.Y.),
Hamed Ghanei, and Priyanka D Abeyrathne, and Joseph S Lam
February 2003, Antimicrobial agents and chemotherapy,
Hamed Ghanei, and Priyanka D Abeyrathne, and Joseph S Lam
January 1996, Mikrobiologiia,
Hamed Ghanei, and Priyanka D Abeyrathne, and Joseph S Lam
January 1966, Tip Fakultesi mecmuasi,
Hamed Ghanei, and Priyanka D Abeyrathne, and Joseph S Lam
August 2021, International journal of biological macromolecules,
Hamed Ghanei, and Priyanka D Abeyrathne, and Joseph S Lam
June 2008, Antimicrobial agents and chemotherapy,
Copied contents to your clipboard!