Influence of bovine and caprine casein phosphopeptides differing in alphas1-casein content in determining the absorption of calcium from bovine and caprine calcium-fortified milks in rats. 2007

Adela Mora-Gutierrez, and Harold M Farrell, and Rahmat Attaie, and Velva J McWhinney, and Changzheng Wang
Cooperative Agricultural Research Center, Prairie View AandM University, Prairie View, TX 77446, USA. admora@pvamu.edu

Bovine and caprine milks have a similar overall gross composition, but vary considerably in the ratios of their casein components. These differences cause significant changes in the ability of caseins to bind and stabilize calcium (Ca). It might be expected that these in vitro variations, which are thought to be due to differences in casein phosphopeptides (CPP) content, could lead to in vivo differences in the digestion and absorption of Ca. To test this hypothesis three milks with different casein ratios [bovine (B), caprine high in alphas1-casein (CH) and caprine low in alphas1-casein (CL)] were compared with regard to Ca absorption and deposition in growing male rats. For comparison, each milk was Ca-fortified (BCa-milk, CHCa-milk, and CLCa-milk) and CPP, prepared by enzymatic hydrolysis from the respective caseins (extrinsic CPP), were added to both native and Ca-milks. The effects of added CPP (extrinsic) could then be compared with intrinsic CPP released from the gastrointestinal digestion of caseins. Total gastric Ca was sampled at 15, 30 and 60 min after ingestion. No differences were found among the native milks with or without CPP, but the Ca from all Ca-milks (regardless of casein type) appeared to clear the stomach more rapidly and this was enhanced by the extrinsic CPP. The total intestinal Ca was not different among the native milks+/-CPP, however, it rose more rapidly with Ca fortification, and was higher at 30 min for all CPP-Ca-milks. At 60 min the total intestinal Ca level fell for the CPP-Ca-milks while all others continued to rise. These observations suggest that the CPP in Ca-milks enhance gastric clearance and uptake from the intestine. Ca availability from BCa-milk, CHCa-milk, and CLCa-milk with and without CPP was estimated by both plasma and femur uptake of 45Ca. Ca availability was enhanced at 5 h in the plasma in each case by added CPP. In all cases CPP stimulated Ca availability in the femur, but the CL-CPP was higher (P<0.05) than that of either CH-CPP or B-CPP (extrinsic CPP). Based on the results of this study we can conclude that the addition of CPP will have beneficial effect on the absorption of Ca in growing rats from CaCO3 added to bovine and caprine milks.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D008297 Male Males
D008892 Milk The off-white liquid secreted by the mammary glands of humans and other mammals. It contains proteins, sugar, lipids, vitamins, and minerals. Cow Milk,Cow's Milk,Milk, Cow,Milk, Cow's
D010748 Phosphopeptides PEPTIDES that incorporate a phosphate group via PHOSPHORYLATION. Phosphopeptide
D001842 Bone and Bones A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principal cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX. Bone Tissue,Bone and Bone,Bone,Bones,Bones and Bone,Bones and Bone Tissue,Bony Apophyses,Bony Apophysis,Condyle,Apophyses, Bony,Apophysis, Bony,Bone Tissues,Condyles,Tissue, Bone,Tissues, Bone
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002132 Calcium Radioisotopes Unstable isotopes of calcium that decay or disintegrate emitting radiation. Ca atoms with atomic weights 39, 41, 45, 47, 49, and 50 are radioactive calcium isotopes. Radioisotopes, Calcium
D002364 Caseins A mixture of related phosphoproteins occurring in milk and cheese. The group is characterized as one of the most nutritive milk proteins, containing all of the common amino acids and rich in the essential ones. alpha-Casein,gamma-Casein,AD beta-Casein,Acetylated, Dephosphorylated beta-Casein,Casein,Casein A,K-Casein,Sodium Caseinate,alpha(S1)-Casein,alpha(S1)-Casein A,alpha(S1)-Casein B,alpha(S1)-Casein C,alpha(S2)-Casein,alpha-Caseins,beta-Casein,beta-Caseins,epsilon-Casein,gamma-Caseins,kappa-Casein,kappa-Caseins,AD beta Casein,Caseinate, Sodium,K Casein,alpha Casein,alpha Caseins,beta Casein,beta Caseins,beta-Casein Acetylated, Dephosphorylated,beta-Casein, AD,epsilon Casein,gamma Casein,gamma Caseins,kappa Casein,kappa Caseins
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D005527 Food, Fortified Any food that has been supplemented with essential NUTRIENTS either in quantities that are greater than those normally present, or which are not found in the food typically. Fortified food also includes food enriched by adding various nutrients to compensate for those removed by refinement or processing. (Modified from Segen, Dictionary of Modern Medicine, 1992). Enriched Food,Food, Supplemented,Enriched Foods,Food, Enriched,Foods, Enriched,Foods, Fortified,Foods, Supplemented,Fortified Food,Fortified Foods,Supplemented Food,Supplemented Foods

Related Publications

Adela Mora-Gutierrez, and Harold M Farrell, and Rahmat Attaie, and Velva J McWhinney, and Changzheng Wang
January 2001, The British journal of nutrition,
Adela Mora-Gutierrez, and Harold M Farrell, and Rahmat Attaie, and Velva J McWhinney, and Changzheng Wang
November 1993, The Journal of dairy research,
Adela Mora-Gutierrez, and Harold M Farrell, and Rahmat Attaie, and Velva J McWhinney, and Changzheng Wang
November 1997, Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements (GMS),
Adela Mora-Gutierrez, and Harold M Farrell, and Rahmat Attaie, and Velva J McWhinney, and Changzheng Wang
October 1996, Die Nahrung,
Adela Mora-Gutierrez, and Harold M Farrell, and Rahmat Attaie, and Velva J McWhinney, and Changzheng Wang
January 1983, The British journal of nutrition,
Adela Mora-Gutierrez, and Harold M Farrell, and Rahmat Attaie, and Velva J McWhinney, and Changzheng Wang
February 2012, Analytical and bioanalytical chemistry,
Adela Mora-Gutierrez, and Harold M Farrell, and Rahmat Attaie, and Velva J McWhinney, and Changzheng Wang
June 2008, Journal of dairy science,
Adela Mora-Gutierrez, and Harold M Farrell, and Rahmat Attaie, and Velva J McWhinney, and Changzheng Wang
January 1998, International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition,
Adela Mora-Gutierrez, and Harold M Farrell, and Rahmat Attaie, and Velva J McWhinney, and Changzheng Wang
November 1980, The Journal of nutrition,
Adela Mora-Gutierrez, and Harold M Farrell, and Rahmat Attaie, and Velva J McWhinney, and Changzheng Wang
January 1973, Biochimica et biophysica acta,
Copied contents to your clipboard!