Representation of sensory information in the cricket cercal sensory system. I. Response properties of the primary interneurons. 1991

J P Miller, and G A Jacobs, and F E Theunissen
Department of Molecular and Cell Biology, University of California, Berkeley 94720.

1. Six different types of primary wind-sensitive interneurons in the cricket cercal sensory system were tested for their sensitivity to the orientation and peak velocity of unidirectional airflow stimuli. 2. The cells could be grouped into two distinct classes on the basis of their thresholds and static sensitivities to airflow velocity. 3. Four interneurons (the right and left 10-2 cells and the right and left 10-3 cells) made up one of the two distinct velocity sensitivity classes. The mean firing frequencies of these interneurons were proportional to the logarithm of peak stimulus velocity over the range from 0.02 to 2.0 cm/s. 4. The other two interneurons studied (left and right 9-3) had a higher air-current velocity threshold, near the saturation level of the 10-2 and 10-3 interneurons. The slope of the velocity sensitivity curve for the 9-3 interneurons was slightly greater than that for the 10-2 and 10-3 interneurons, extending the sensitivity range of the system as a whole to at least 100 cm/s. 5. All of the interneurons had broad, symmetrical, single-lobed directional sensitivity tuning curves that could be accurately represented as truncated sine waves with 360 degree period. 6. The four low-threshold interneurons (i.e., left and right 10-2 and 10-3) had peak directional sensitivities that were evenly spaced around the horizontal plane, and their overlapping tuning curves covered all possible air-current stimulus orientations. The variance in the cells' responses to identical repeated stimuli varied between approximately 10% at the optimal stimulus orientations and approximately 30% at the zero-crossing orientations. 7. The two higher threshold interneurons (left and right 9-3) had broader directional sensitivity curves and wider spacing, resulting in reduced overlap with respect to the low-threshold class.

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D009949 Orientation Awareness of oneself in relation to time, place and person. Cognitive Orientation,Mental Orientation,Psychological Orientation,Cognitive Orientations,Mental Orientations,Orientation, Cognitive,Orientation, Mental,Orientation, Psychological,Orientations,Orientations, Cognitive,Orientations, Mental,Orientations, Psychological,Psychological Orientations
D006135 Gryllidae The family Gryllidae consists of the common house cricket, Acheta domesticus, which is used in neurological and physiological studies. Other genera include Gryllotalpa (mole cricket); Gryllus (field cricket); and Oecanthus (tree cricket). Crickets,Cricket
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012684 Sensory Thresholds The minimum amount of stimulus energy necessary to elicit a sensory response. Sensory Threshold,Threshold, Sensory,Thresholds, Sensory
D014919 Wind The motion of air relative to the earth's surface. Winds

Related Publications

J P Miller, and G A Jacobs, and F E Theunissen
January 1997, Journal of neurophysiology,
J P Miller, and G A Jacobs, and F E Theunissen
November 1996, Neuroscience letters,
J P Miller, and G A Jacobs, and F E Theunissen
May 1993, Journal of comparative physiology. A, Sensory, neural, and behavioral physiology,
J P Miller, and G A Jacobs, and F E Theunissen
January 1976, Biofizika,
J P Miller, and G A Jacobs, and F E Theunissen
March 1998, Journal of neurophysiology,
J P Miller, and G A Jacobs, and F E Theunissen
April 2006, Zoological science,
J P Miller, and G A Jacobs, and F E Theunissen
December 1991, The Anatomical record,
J P Miller, and G A Jacobs, and F E Theunissen
January 1990, Journal of neurobiology,
Copied contents to your clipboard!