Synaptic plasticity in visual cortex: comparison of theory with experiment. 1991

E E Clothiaux, and M F Bear, and L N Cooper
Physics Department, Brown University, Providence, Rhode Island 02912.

1. The aim of this work was to assess whether a form of synaptic modification based on the theory of Bienenstock, Cooper, and Munro (BCM) can, with a fixed set of parameters, reproduce both the kinetics and equilibrium states of experience-dependent modifications cortex. 2. According to the BCM theory, the connection strength of excitatory geniculocortical synapses varies as the product of a measure of input activity (d) and a function (phi) of the summed postsynaptic response. For all postsynaptic responses greater than spontaneous but less than a critical value called the "modification threshold" (theta), phi has a negative value. For all postsynaptic responses greater than theta, phi has a positive value. A novel feature of the BCM theory is that the value of theta is not fixed, but rather "slides" as a nonlinear function of the average postsynaptic response. 3. This theory permits precise specification of theoretical equivalents of experimental situations, allowing detailed, quantitative comparisons of theory with experiment. Such comparisons were carried out here in a series of computer simulations. 4. Simulations are performed by presenting input to a model cortical neuron, calculating the summed postsynaptic response, and then changing the synaptic weights according to the BCM theory. This process is repeated until the synaptic weights reach an equilibrium state. 5. Two types of geniculocortical input are simulated: "pattern" and "noise." Pattern input is assumed to correspond to the type of input that arises when a visual contour of a particular orientation is presented to the retina. This type of input is said to be "correlated" when the two sets of geniculocortical fibers relaying information from the two eyes convey the same patterns at the same time. Noise input is assumed to correspond to the type of input that arises in the absence of visual contours and, by definition, is uncorrelated. 6. By varying the types of input available to the two sets of geniculocortical synapses, we simulate the following types of visual experience: 1) normal binocular contour vision, 2) monocular deprivation, 3) reverse suture, 4) strabismus, 5) binocular deprivation, and 6) normal contour vision after a period of monocular deprivation. 7. The constraints placed on the set of parameters by each type of simulated visual environment, and the effects that such constraints have on the evolution of the synaptic weights, are investigated in detail.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D005829 Geniculate Bodies Part of the DIENCEPHALON inferior to the caudal end of the dorsal THALAMUS. Includes the lateral geniculate body which relays visual impulses from the OPTIC TRACT to the calcarine cortex, and the medial geniculate body which relays auditory impulses from the lateral lemniscus to the AUDITORY CORTEX. Lateral Geniculate Body,Medial Geniculate Body,Metathalamus,Corpus Geniculatum Mediale,Geniculate Nucleus,Lateral Geniculate Nucleus,Medial Geniculate Complex,Medial Geniculate Nucleus,Nucleus Geniculatus Lateralis Dorsalis,Nucleus Geniculatus Lateralis Pars Dorsalis,Bodies, Geniculate,Complex, Medial Geniculate,Complices, Medial Geniculate,Corpus Geniculatum Mediales,Geniculate Bodies, Lateral,Geniculate Bodies, Medial,Geniculate Body,Geniculate Body, Lateral,Geniculate Body, Medial,Geniculate Complex, Medial,Geniculate Complices, Medial,Geniculate Nucleus, Lateral,Geniculate Nucleus, Medial,Geniculatum Mediale, Corpus,Geniculatum Mediales, Corpus,Lateral Geniculate Bodies,Medial Geniculate Bodies,Medial Geniculate Complices,Mediale, Corpus Geniculatum,Mediales, Corpus Geniculatum,Nucleus, Geniculate,Nucleus, Lateral Geniculate,Nucleus, Medial Geniculate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D014796 Visual Perception The selecting and organizing of visual stimuli based on the individual's past experience. Visual Processing,Perception, Visual,Processing, Visual

Related Publications

E E Clothiaux, and M F Bear, and L N Cooper
May 2014, The Journal of neuroscience : the official journal of the Society for Neuroscience,
E E Clothiaux, and M F Bear, and L N Cooper
December 1999, Brain research. Developmental brain research,
E E Clothiaux, and M F Bear, and L N Cooper
June 1996, Nature,
E E Clothiaux, and M F Bear, and L N Cooper
January 1995, Biological research,
E E Clothiaux, and M F Bear, and L N Cooper
January 1996, Progress in brain research,
E E Clothiaux, and M F Bear, and L N Cooper
February 2009, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
E E Clothiaux, and M F Bear, and L N Cooper
June 2018, Science (New York, N.Y.),
E E Clothiaux, and M F Bear, and L N Cooper
April 2005, The European journal of neuroscience,
E E Clothiaux, and M F Bear, and L N Cooper
January 1996, Cerebral cortex (New York, N.Y. : 1991),
E E Clothiaux, and M F Bear, and L N Cooper
September 2017, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!