Assessing metal bioaccumulation in aquatic environments: the inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration. 2007

David K DeForest, and Kevin V Brix, and William J Adams
Parametrix, Inc., 411 108th Avenue NE, Suite 1800, Bellevue, WA 98004, USA. deforest@parametrix.com

Bioaccumulation potential in aquatic biota is typically expressed using ratios of chemical concentrations in organism tissue (typically whole body) relative to chemical exposure concentrations, such as bioconcentration factors (BCFs). Past reviews of metal BCFs for aquatic biota, which account for water-only exposures, have shown that BCFs are often highly variable between organisms and generally inversely related to exposure concentration. This paper further evaluates trends in metal bioaccumulation data by evaluating data for bioaccumulation factors (BAFs) and trophic transfer factors (TTFs). Bioaccumulation factor data were compiled from field studies that account for combined waterborne and dietary metal exposures. Trophic transfer factor data for metals were compiled from laboratory studies in which aquatic food chains were simulated. Natural aquatic food webs are rarely sufficiently understood to properly evaluate exact predator-prey relationships (i.e., TTFs). Results indicate that field BAFs, like laboratory BCFs, tend to be significantly (p < or = 0.05) inversely related to exposure concentration. Bioaccumulation factors are frequently 100-1000 times larger than BCFs for the same metal and species. This difference is attributed to both lower exposure levels in the field and inclusion of the dietary exposure route. Trophic transfer factors for the metals reviewed, including selenium and methyl mercury were also observed to be inversely related to exposure concentration, particularly at lower exposure concentrations. These inverse relationships have important implications for environmental regulations (e.g., hazard classification and tissue residue-based water quality criteria) and for the use of metal bioaccumulation data in site-specific environmental evaluations, such as ecological and human health risk assessments. Data presented indicate that for metals and metalloids, unlike organic substances, no one BAF or TTF can be used to express bioaccumulation and/or trophic transfer without consideration of the exposure concentration.

UI MeSH Term Description Entries
D008670 Metals Electropositive chemical elements characterized by ductility, malleability, luster, and conductance of heat and electricity. They can replace the hydrogen of an acid and form bases with hydroxyl radicals. (Grant & Hackh's Chemical Dictionary, 5th ed) Metal
D008767 Methylmercury Compounds Organic compounds in which mercury is attached to a methyl group. Methyl Mercury Compounds,Compounds, Methyl Mercury,Compounds, Methylmercury,Mercury Compounds, Methyl
D001822 Body Burden The total amount of a chemical, metal or radioactive substance present at any time after absorption in the body of man or animal. Body Burdens,Burden, Body,Burdens, Body
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004781 Environmental Exposure The exposure to potentially harmful chemical, physical, or biological agents in the environment or to environmental factors that may include ionizing radiation, pathogenic organisms, or toxic chemicals. Exposure, Environmental,Environmental Exposures,Exposures, Environmental
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012621 Seasons Divisions of the year according to some regularly recurrent phenomena usually astronomical or climatic. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Seasonal Variation,Season,Seasonal Variations,Variation, Seasonal,Variations, Seasonal
D012643 Selenium An element with the atomic symbol Se, atomic number 34, and atomic weight 78.97. It is an essential micronutrient for mammals and other animals but is toxic in large amounts. Selenium protects intracellular structures against oxidative damage. It is an essential component of GLUTATHIONE PEROXIDASE. Selenium-80,Selenium 80
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions

Related Publications

David K DeForest, and Kevin V Brix, and William J Adams
July 2012, Environmental research,
David K DeForest, and Kevin V Brix, and William J Adams
October 2018, Environmental science & technology,
David K DeForest, and Kevin V Brix, and William J Adams
January 1984, Residue reviews,
David K DeForest, and Kevin V Brix, and William J Adams
February 2013, Environmental pollution (Barking, Essex : 1987),
David K DeForest, and Kevin V Brix, and William J Adams
April 2023, Environmental science & technology,
David K DeForest, and Kevin V Brix, and William J Adams
May 2017, Environmental science & technology,
David K DeForest, and Kevin V Brix, and William J Adams
September 2021, Integrated environmental assessment and management,
David K DeForest, and Kevin V Brix, and William J Adams
November 2018, Environmental science & technology,
David K DeForest, and Kevin V Brix, and William J Adams
January 2018, Environmental science & technology,
David K DeForest, and Kevin V Brix, and William J Adams
May 2018, The Science of the total environment,
Copied contents to your clipboard!