MAP17 inhibits Myc-induced apoptosis through PI3K/AKT pathway activation. 2007

Maria V Guijarro, and Wolfgang Link, and Aránzazu Rosado, and Juan F M Leal, and Amancio Carnero
Experimental Therapeutics Programme, Centro Nacional de Investigaciones Oncológicas, Madrid 28029, Spain.

MAP17 is a non-glycosylated membrane-associated protein that has been shown to be over-expressed in human carcinomas, suggesting a possible role of this protein in tumorigenesis. However, very little is known about the molecular mechanism mediating the possible tumor promoting properties of MAP17. To analyze the effect of MAP17 on cell survival, we used Rat1 fibroblasts model where Myc over-expression promotes apoptosis in low serum conditions. In the present work, we report that over-expression of MAP17 protects Rat1a fibroblasts from Myc-induced apoptosis through reactive oxygen species (ROS)-mediated activation of the PI3K/AKT signaling pathway. MAP17-mediated survival was associated with absence of Bax translocation to the mitochondria and reduced caspase-3 activation. We show that a fraction of PTEN undergoes oxidation in MAP17-over-expressing cells. Furthermore, activation of AKT by MAP17 as measured by Thr308 phosphorylation was independent of PI3K activity. Importantly, modulation of ROS by antioxidant treatment prevented activation of AKT, restoring the level of apoptosis in serum-starved Rat1/c-Myc fibroblasts. Finally, over-expression of a dominant-negative mutant of AKT in MAP17-expressing clones makes them sensitive to serum depletion. Our data indicate that MAP17 protein activates AKT through ROS and this is determinant to confer resistance to Myc-induced apoptosis in the absence of serum.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016271 Proto-Oncogene Proteins c-myc Basic helix-loop-helix transcription factors encoded by the c-myc genes. They are normally involved in nucleic acid metabolism and in mediating the cellular response to growth factors. Elevated and deregulated (constitutive) expression of c-myc proteins can cause tumorigenesis. L-myc Proteins,N-myc Proteins,c-myc Proteins,myc Proto-Oncogene Proteins,p62(c-myc),Proto-Oncogene Products c-myc,Proto-Oncogene Proteins myc,myc Proto-Oncogene Product p62,p62 c-myc,L myc Proteins,N myc Proteins,Proteins myc, Proto-Oncogene,Proto Oncogene Products c myc,Proto Oncogene Proteins c myc,Proto Oncogene Proteins myc,Proto-Oncogene Proteins, myc,c myc Proteins,myc Proto Oncogene Product p62,myc Proto Oncogene Proteins,myc, Proto-Oncogene Proteins,p62 c myc

Related Publications

Maria V Guijarro, and Wolfgang Link, and Aránzazu Rosado, and Juan F M Leal, and Amancio Carnero
January 2016, Cell biochemistry and function,
Maria V Guijarro, and Wolfgang Link, and Aránzazu Rosado, and Juan F M Leal, and Amancio Carnero
November 2023, Scientific reports,
Maria V Guijarro, and Wolfgang Link, and Aránzazu Rosado, and Juan F M Leal, and Amancio Carnero
January 2023, Human & experimental toxicology,
Maria V Guijarro, and Wolfgang Link, and Aránzazu Rosado, and Juan F M Leal, and Amancio Carnero
November 2018, Molecules and cells,
Maria V Guijarro, and Wolfgang Link, and Aránzazu Rosado, and Juan F M Leal, and Amancio Carnero
January 2024, Current cancer drug targets,
Maria V Guijarro, and Wolfgang Link, and Aránzazu Rosado, and Juan F M Leal, and Amancio Carnero
December 2009, The Biochemical journal,
Maria V Guijarro, and Wolfgang Link, and Aránzazu Rosado, and Juan F M Leal, and Amancio Carnero
January 2018, International journal of clinical and experimental pathology,
Maria V Guijarro, and Wolfgang Link, and Aránzazu Rosado, and Juan F M Leal, and Amancio Carnero
November 2023, Pesticide biochemistry and physiology,
Maria V Guijarro, and Wolfgang Link, and Aránzazu Rosado, and Juan F M Leal, and Amancio Carnero
April 2020, Oncology letters,
Maria V Guijarro, and Wolfgang Link, and Aránzazu Rosado, and Juan F M Leal, and Amancio Carnero
January 2021, Frontiers in pharmacology,
Copied contents to your clipboard!