Triton X-100 partitioning into sphingomyelin bilayers at subsolubilizing detergent concentrations: effect of lipid phase and a comparison with dipalmitoylphosphatidylcholine. 2007

Cristina Arnulphi, and Jesús Sot, and Marcos García-Pacios, and José-Luis R Arrondo, and Alicia Alonso, and Félix M Goñi
Unidad de Biofísica (Centro Mixto CSIC-UPV/EHU), Departamento de Bioquímica, Universidad del País Vasco, 48080 Bilbao, Spain.

We examined the partitioning of the nonionic detergent Triton X-100 at subsolubilizing concentrations into bilayers of either egg sphingomyelin (SM), palmitoyl SM, or dipalmitoylphosphatidylcholine. SM is known to require less detergent than phosphatidylcholine to achieve the same extent of solubilization, and for all three phospholipids solubilization is temperature dependent. In addition, the three lipids exhibit a gel-fluid phase transition in the 38-41 degrees C temperature range. Experiments have been performed at Triton X-100 concentrations well below the critical micellar concentration, so that only detergent monomers have to be considered. Lipid/detergent mol ratios were never <10:1, thus ensuring that the solubilization stage was never reached. Isothermal titration calorimetry, DSC, and infrared, fluorescence, and (31)P-NMR spectroscopies were applied in the 5-55 degrees C temperature range. The results show that, irrespective of the chemical nature of the lipid, DeltaG degrees of partitioning remained in the range of -27 kJ/mol lipid in the gel phase and of -30 kJ/mol lipid in the fluid phase. This small difference cannot account for the observed phase-dependent differences in solubilization. Such virtually constant DeltaG degrees occurred as a result of the compensation of enthalpic and entropic components, which varied with both temperature and lipid composition. Consequently, the observed different susceptibilities to solubilization cannot be attributed to differential binding but to further events in the solubilization process, e.g., bilayer saturability by detergent or propensity to form lipid-detergent mixed micelles. The data here shed light on the relatively unexplored early stages of membrane solubilization and open new ways to understand the phenomenon of membrane resistance toward detergent solubilization.

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008055 Lipids A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed) Lipid
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D002151 Calorimetry The measurement of the quantity of heat involved in various processes, such as chemical reactions, changes of state, and formations of solutions, or in the determination of the heat capacities of substances. The fundamental unit of measurement is the joule or the calorie (4.184 joules). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
D002152 Calorimetry, Differential Scanning Differential thermal analysis in which the sample compartment of the apparatus is a differential calorimeter, allowing an exact measure of the heat of transition independent of the specific heat, thermal conductivity, and other variables of the sample. Differential Thermal Analysis, Calorimetric,Calorimetric Differential Thermal Analysis,Differential Scanning Calorimetry,Scanning Calorimetry, Differential
D003902 Detergents Purifying or cleansing agents, usually salts of long-chain aliphatic bases or acids, that exert cleansing (oil-dissolving) and antimicrobial effects through a surface action that depends on possessing both hydrophilic and hydrophobic properties. Cleansing Agents,Detergent Pods,Laundry Detergent Pods,Laundry Pods,Syndet,Synthetic Detergent,Agent, Cleansing,Agents, Cleansing,Cleansing Agent,Detergent,Detergent Pod,Detergent Pod, Laundry,Detergent Pods, Laundry,Detergent, Synthetic,Detergents, Synthetic,Laundry Detergent Pod,Laundry Pod,Pod, Detergent,Pod, Laundry,Pod, Laundry Detergent,Pods, Detergent,Pods, Laundry,Pods, Laundry Detergent,Synthetic Detergents
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence
D013055 Spectrophotometry, Infrared Spectrophotometry in the infrared region, usually for the purpose of chemical analysis through measurement of absorption spectra associated with rotational and vibrational energy levels of molecules. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) IR Spectra,Infrared Spectrophotometry,IR Spectras,Spectra, IR
D013109 Sphingomyelins A class of sphingolipids found largely in the brain and other nervous tissue. They contain phosphocholine or phosphoethanolamine as their polar head group so therefore are the only sphingolipids classified as PHOSPHOLIPIDS. Sphingomyelin

Related Publications

Cristina Arnulphi, and Jesús Sot, and Marcos García-Pacios, and José-Luis R Arrondo, and Alicia Alonso, and Félix M Goñi
August 2002, Biochimica et biophysica acta,
Cristina Arnulphi, and Jesús Sot, and Marcos García-Pacios, and José-Luis R Arrondo, and Alicia Alonso, and Félix M Goñi
June 2012, Biophysical journal,
Cristina Arnulphi, and Jesús Sot, and Marcos García-Pacios, and José-Luis R Arrondo, and Alicia Alonso, and Félix M Goñi
December 1974, Chemistry and physics of lipids,
Cristina Arnulphi, and Jesús Sot, and Marcos García-Pacios, and José-Luis R Arrondo, and Alicia Alonso, and Félix M Goñi
November 1986, European journal of biochemistry,
Cristina Arnulphi, and Jesús Sot, and Marcos García-Pacios, and José-Luis R Arrondo, and Alicia Alonso, and Félix M Goñi
January 1980, The International journal of biochemistry,
Cristina Arnulphi, and Jesús Sot, and Marcos García-Pacios, and José-Luis R Arrondo, and Alicia Alonso, and Félix M Goñi
May 1992, FEBS letters,
Cristina Arnulphi, and Jesús Sot, and Marcos García-Pacios, and José-Luis R Arrondo, and Alicia Alonso, and Félix M Goñi
July 2017, Langmuir : the ACS journal of surfaces and colloids,
Cristina Arnulphi, and Jesús Sot, and Marcos García-Pacios, and José-Luis R Arrondo, and Alicia Alonso, and Félix M Goñi
January 2015, Langmuir : the ACS journal of surfaces and colloids,
Cristina Arnulphi, and Jesús Sot, and Marcos García-Pacios, and José-Luis R Arrondo, and Alicia Alonso, and Félix M Goñi
January 2019, Colloids and surfaces. B, Biointerfaces,
Cristina Arnulphi, and Jesús Sot, and Marcos García-Pacios, and José-Luis R Arrondo, and Alicia Alonso, and Félix M Goñi
February 1984, Archives of biochemistry and biophysics,
Copied contents to your clipboard!