Induction of cytochrome P450 isozymes in rat liver by methyl n-alkyl ketones and n-alkylbenzenes. Effects of hydrophobicity of inducers on inducibility of cytochrome P450. 1991

S Imaoka, and Y Funae
Laboratory of Chemistry, Osaka City University Medical School, Japan.

The effects of methyl n-alkyl ketones and n-alkylbenzenes on hepatic cytochrome P450s in vivo and in vitro were investigated. Male rats were treated with acetone, methyl ethyl ketone, methyl n-propyl ketone, methyl n-butyl ketone, benzene, toluene, ethylbenzene, n-propylbenzene, or n-butylbenzene. The methyl n-alkyl ketones induced the metabolic activities of hepatic microsomes toward aminopyrine, 7-ethoxycoumarin, and aniline. n-Alkylbenzenes induced aminopyrine and 7-ethoxycoumarin metabolic activities. Testosterone 2 beta- and 6 beta-hydroxylation activities were induced by ketones with a long side chain such as methyl n-butyl ketone. Testosterone 2 alpha-hydroxylation activity was decreased by treatment with methyl n-butyl ketone. Testosterone 16 beta-hydroxylation activity was induced by treatment with methyl n-alkyl ketones. The inducibility was dependent on the length of the side chain. Testosterone 16 beta-hydroxylation activity also was induced by n-alkylbenzenes. These results indicate that the levels of multiple forms of cytochrome P450 were changed by treatment with these chemicals. P450IIE1, an acetone-inducible form, was induced by methyl n-alkyl ketones or n-alkylbenzenes. The inducibility did not depend on the length of the side chain of these chemicals. P450IIB1 and IIB2, both phenobarbital-inducible forms, were induced with methyl n-alkyl ketones and n-alkylbenzenes to an extent depending on the length of the side chain of these chemicals. Thus, the hydrophobicity of the inducer affected phenobarbital-type induction but not the induction of P450IIE1. We further investigated the interactions of ketone and benzene derivatives with cytochrome P450 in vitro. Testosterone hydroxylation activities of hepatic microsomes were measured in the presence of methyl n-alkyl ketones and n-alkylbenzenes. Methyl n-alkyl ketones inhibited testosterone 16 beta-hydroxylation activity. n-Alkylbenzenes inhibited 2 beta-, 6 beta-, 15 alpha-, 16 alpha-, and 16 beta-hydroxylation activities. Testosterone hydroxylation activities were inhibited by these chemicals depending on the length of the side chain. n-Alkylbenzenes were stronger inhibitors than methyl n-alkyl ketones, n-Butylbenzene was the strongest inhibitor of these activities. These results indicate that hydrophobicity was important in the interaction of these chemicals with cytochrome P450, and that there is some relationship between the inducibility of cytochrome P450 and its interaction with inducers.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007659 Ketones Organic compounds containing a carbonyl group Ketone
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008742 Methyl n-Butyl Ketone An industrial solvent which causes nervous system degeneration. MBK is an acronym often used to refer to it. 2-Hexanone,Butylmethyl Ketone,Hexan-2-one,2 Hexanone,Hexan 2 one,Ketone, Butylmethyl,Ketone, Methyl n-Butyl,Methyl n Butyl Ketone,n-Butyl Ketone, Methyl
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D002074 Butanones Derivatives of butanone, also known as methyl ethyl ketone (with structural formula CH3COC2H5).
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D000096 Acetone A colorless liquid used as a solvent and an antiseptic. It is one of the ketone bodies produced during ketoacidosis.

Related Publications

S Imaoka, and Y Funae
February 1990, Archives of biochemistry and biophysics,
S Imaoka, and Y Funae
February 1990, Archives of biochemistry and biophysics,
S Imaoka, and Y Funae
March 1990, Toxicology and applied pharmacology,
Copied contents to your clipboard!