Characterization of human immunodeficiency virus type 1 replication in immature and mature dendritic cells reveals dissociable cis- and trans-infection. 2007

Chunsheng Dong, and Alicia M Janas, and Jian-Hua Wang, and Wendy J Olson, and Li Wu
Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.

Dendritic cells (DCs) transmit human immunodeficiency virus type 1 (HIV-1) to CD4(+) T cells through the trans- and cis-infection pathways; however, little is known about the relative efficiencies of these pathways and whether they are interdependent. Here we compare cis- and trans-infections of HIV-1 mediated by immature DCs (iDCs) and mature DCs (mDCs), using replication-competent and single-cycle HIV-1. Monocyte-derived iDCs were differentiated into various types of mDCs by lipopolysaccharide (LPS), tumor necrosis factor alpha (TNF-alpha), and CD40 ligand (CD40L). iDCs and CD40L-induced mDCs were susceptible to HIV-1 infection and mediated efficient viral transmission to CD4(+) T cells. Although HIV-1 cis-infection was partially restricted in TNF-alpha-induced mDCs and profoundly blocked in LPS-induced mDCs, these cells efficiently promoted HIV-1 trans-infection of CD4(+) T cells. The postentry restriction of HIV-1 infection in LPS-induced mDCs was identified at the levels of reverse transcription and postintegration, using real-time PCR quantification of viral DNA and integration. Furthermore, nucleofection of DCs with HIV-1 proviral DNA confirmed that impaired gene expression of LPS-induced mDCs was responsible for the postentry restriction of HIV-1 infection. Our results suggest that various DC subsets in vivo may differentially contribute to HIV-1 dissemination via dissociable cis- and trans-infections.

UI MeSH Term Description Entries
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003713 Dendritic Cells Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION). Dendritic Cells, Interdigitating,Interdigitating Cells,Plasmacytoid Dendritic Cells,Veiled Cells,Dendritic Cells, Interstitial,Dendritic Cells, Plasmacytoid,Interdigitating Dendritic Cells,Interstitial Dendritic Cells,Cell, Dendritic,Cell, Interdigitating,Cell, Interdigitating Dendritic,Cell, Interstitial Dendritic,Cell, Plasmacytoid Dendritic,Cell, Veiled,Cells, Dendritic,Cells, Interdigitating,Cells, Interdigitating Dendritic,Cells, Interstitial Dendritic,Cells, Plasmacytoid Dendritic,Cells, Veiled,Dendritic Cell,Dendritic Cell, Interdigitating,Dendritic Cell, Interstitial,Dendritic Cell, Plasmacytoid,Interdigitating Cell,Interdigitating Dendritic Cell,Interstitial Dendritic Cell,Plasmacytoid Dendritic Cell,Veiled Cell
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications
D015496 CD4-Positive T-Lymphocytes A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the T4 cell which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infection is the depletion of this subset of T-lymphocytes. T4 Cells,T4 Lymphocytes,CD4-Positive Lymphocytes,CD4 Positive T Lymphocytes,CD4-Positive Lymphocyte,CD4-Positive T-Lymphocyte,Lymphocyte, CD4-Positive,Lymphocytes, CD4-Positive,T-Lymphocyte, CD4-Positive,T-Lymphocytes, CD4-Positive,T4 Cell,T4 Lymphocyte
D015497 HIV-1 The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte. Human immunodeficiency virus 1,HIV-I,Human Immunodeficiency Virus Type 1,Immunodeficiency Virus Type 1, Human
D015658 HIV Infections Includes the spectrum of human immunodeficiency virus infections that range from asymptomatic seropositivity, thru AIDS-related complex (ARC), to acquired immunodeficiency syndrome (AIDS). HTLV-III Infections,HTLV-III-LAV Infections,T-Lymphotropic Virus Type III Infections, Human,HIV Coinfection,Coinfection, HIV,Coinfections, HIV,HIV Coinfections,HIV Infection,HTLV III Infections,HTLV III LAV Infections,HTLV-III Infection,HTLV-III-LAV Infection,Infection, HIV,Infection, HTLV-III,Infection, HTLV-III-LAV,Infections, HIV,Infections, HTLV-III,Infections, HTLV-III-LAV,T Lymphotropic Virus Type III Infections, Human
D016662 Virus Integration Insertion of viral DNA into host-cell DNA. This includes integration of phage DNA into bacterial DNA; (LYSOGENY); to form a PROPHAGE or integration of retroviral DNA into cellular DNA to form a PROVIRUS. Integration, Provirus,Integration, Virus,Provirus Integration,Viral integration,Integrations, Provirus,Integrations, Virus,Provirus Integrations,Viral integrations,Virus Integrations,integration, Viral,integrations, Viral

Related Publications

Chunsheng Dong, and Alicia M Janas, and Jian-Hua Wang, and Wendy J Olson, and Li Wu
January 1995, Advances in experimental medicine and biology,
Chunsheng Dong, and Alicia M Janas, and Jian-Hua Wang, and Wendy J Olson, and Li Wu
September 2007, Journal of virology,
Chunsheng Dong, and Alicia M Janas, and Jian-Hua Wang, and Wendy J Olson, and Li Wu
June 1995, The Journal of general virology,
Chunsheng Dong, and Alicia M Janas, and Jian-Hua Wang, and Wendy J Olson, and Li Wu
June 2006, Journal of virology,
Chunsheng Dong, and Alicia M Janas, and Jian-Hua Wang, and Wendy J Olson, and Li Wu
September 2002, AIDS research and human retroviruses,
Chunsheng Dong, and Alicia M Janas, and Jian-Hua Wang, and Wendy J Olson, and Li Wu
November 1992, The Journal of investigative dermatology,
Chunsheng Dong, and Alicia M Janas, and Jian-Hua Wang, and Wendy J Olson, and Li Wu
September 1997, Journal of virology,
Chunsheng Dong, and Alicia M Janas, and Jian-Hua Wang, and Wendy J Olson, and Li Wu
January 1991, Disease markers,
Chunsheng Dong, and Alicia M Janas, and Jian-Hua Wang, and Wendy J Olson, and Li Wu
September 1991, Proceedings of the National Academy of Sciences of the United States of America,
Chunsheng Dong, and Alicia M Janas, and Jian-Hua Wang, and Wendy J Olson, and Li Wu
May 1999, Journal of virology,
Copied contents to your clipboard!