| D009124 |
Muscle Proteins |
The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. |
Muscle Protein,Protein, Muscle,Proteins, Muscle |
|
| D009424 |
Nervous System Physiological Phenomena |
Characteristic properties and processes of the NERVOUS SYSTEM as a whole or with reference to the peripheral or the CENTRAL NERVOUS SYSTEM. |
Nervous System Physiologic Processes,Nervous System Physiological Processes,Nervous System Physiology,Nervous System Physiological Concepts,Nervous System Physiological Phenomenon,Nervous System Physiological Process,Physiology, Nervous System,System Physiology, Nervous |
|
| D009687 |
Nuclear Proteins |
Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. |
Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar |
|
| D010750 |
Phosphoproteins |
|
Phosphoprotein |
|
| D011950 |
Receptors, Cholinergic |
Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. |
ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive |
|
| D003714 |
Denervation |
The resection or removal of the nerve to an organ or part. |
Laser Neurectomy,Neurectomy,Peripheral Neurectomy,Radiofrequency Neurotomy,Denervations,Laser Neurectomies,Neurectomies,Neurectomies, Laser,Neurectomies, Peripheral,Neurectomy, Laser,Neurectomy, Peripheral,Neurotomies, Radiofrequency,Neurotomy, Radiofrequency,Peripheral Neurectomies,Radiofrequency Neurotomies |
|
| D006706 |
Homeostasis |
The processes whereby the internal environment of an organism tends to remain balanced and stable. |
Autoregulation |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D000831 |
Animals, Newborn |
Refers to animals in the period of time just after birth. |
Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals |
|
| D012333 |
RNA, Messenger |
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. |
Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated |
|