Effects of long-term treatment with methyl mercury on the developing rat brain. 1991

H Lindström, and J Luthman, and A Oskarsson, and J Sundberg, and L Olson
Department of Histology and Neurobiology, Karolinska Institute, Stockholm, Sweden.

Sprague-Dawley rats were exposed to low doses of methyl mercury (3.9 mg mercury/kg diet), via their dams during gestation and lactation and directly via their diet until sacrifice at 50 days postpartum, in order to study possible detrimental effects on CNS development. The methyl mercury exposure of the rats resulted in a brain concentration of 1.45 +/- 0.06 mg mercury/kg wet weight (mean +/- SEM). No general toxic effects were observed; body weight was not affected, brain weight was only slightly increased. No discernible general morphological alterations were seen in the brain as evaluated using cresyl violet histology. Furthermore, no effects on GFA-positive astrocytes in brain sections were observed and computerized morphometry of smeared astrocytes from frontal cortex, hippocampus, and cerebellum did not reveal any effects of the methyl mercury treatment. The noradrenaline (NA) and dopamine (DA) systems were also studied. In cerebellum the NA levels were increased (117% of controls, P = 0.008), whereas in other regions analyzed NA and DA levels were unchanged. Thus, long-term low-dosage exposure of methyl mercury in rats during development does not appear to exert any major effects on the morphological maturation of neurons and astrocytes. However, the results indicate that effects may occur in specific transmitter-identified systems, such as the NA input to cerebellum. The results therefore underline the need for detailed biochemical analyses to study the effects of long-term low-dosage exposure to neurotoxic compounds.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D008431 Maternal-Fetal Exchange Exchange of substances between the maternal blood and the fetal blood at the PLACENTA via PLACENTAL CIRCULATION. The placental barrier excludes microbial or viral transmission. Transplacental Exposure,Exchange, Maternal-Fetal,Exposure, Transplacental,Maternal Fetal Exchange
D008767 Methylmercury Compounds Organic compounds in which mercury is attached to a methyl group. Methyl Mercury Compounds,Compounds, Methyl Mercury,Compounds, Methylmercury,Mercury Compounds, Methyl
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001835 Body Weight The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms. Body Weights,Weight, Body,Weights, Body
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon

Related Publications

H Lindström, and J Luthman, and A Oskarsson, and J Sundberg, and L Olson
February 1994, Toxicology and applied pharmacology,
H Lindström, and J Luthman, and A Oskarsson, and J Sundberg, and L Olson
October 1995, Toxicology and applied pharmacology,
H Lindström, and J Luthman, and A Oskarsson, and J Sundberg, and L Olson
August 1984, Environmental research,
H Lindström, and J Luthman, and A Oskarsson, and J Sundberg, and L Olson
April 1993, Environmental research,
H Lindström, and J Luthman, and A Oskarsson, and J Sundberg, and L Olson
February 1977, Acta neurologica Scandinavica,
H Lindström, and J Luthman, and A Oskarsson, and J Sundberg, and L Olson
May 2016, Biological trace element research,
H Lindström, and J Luthman, and A Oskarsson, and J Sundberg, and L Olson
March 1975, Aviation, space, and environmental medicine,
H Lindström, and J Luthman, and A Oskarsson, and J Sundberg, and L Olson
January 1974, Environmental physiology & biochemistry,
H Lindström, and J Luthman, and A Oskarsson, and J Sundberg, and L Olson
June 2009, Seminars in fetal & neonatal medicine,
H Lindström, and J Luthman, and A Oskarsson, and J Sundberg, and L Olson
June 1970, The Kumamoto medical journal,
Copied contents to your clipboard!