Oxygen free radicals and lipid peroxidation in the pathogenesis of gastric mucosal lesions induced by indomethacin in rats. Relation to gastric hypermotility. 1991

K Takeuchi, and K Ueshima, and Y Hironaka, and Y Fujioka, and J Matsumoto, and S Okabe
Department of Applied Pharmacology, Kyoto Pharmaceutical University, Japan.

The relationship of gastric hypermotility to mucosal hemodynamics, lipid peroxidation and vascular permeability changes was investigated in the pathogenesis of indomethacin-induced gastric lesions in rats. Subcutaneous administration of indomethacin (25 mg/kg) produced an increase in both the amplitude and frequency of stomach contraction from 30 min after treatment, resulting in hemorrhagic damage 2 h later. Gastric mucosal blood flow measured by a Laser flowmetry showed oscillatory fluctuations under hypercontractile states: a decrease during contraction followed by an increase during relaxation. Mucosal lipid peroxidation and vascular permeability were significantly increased with time after indomethacin treatment, and these changes preceded the appearance of hemorrhagic damage. All these events were prevented when gastric hypermotility was inhibited by atropine or 16,16-dimethyl prostaglandin E2. Pretreatment of the animals with allopurinol and hydroxyurea or continuous infusion of superoxide dismutase and dimethyl sulfoxide during a test period also attenuated these functional changes and mucosal lesions induced by indomethacin, without affecting the motility response. We conclude that oxygen free radicals may play a role in the development of mucosal lesions associated with gastric hypermotility in indomethacin-treated rats.

UI MeSH Term Description Entries
D007213 Indomethacin A non-steroidal anti-inflammatory agent (NSAID) that inhibits CYCLOOXYGENASE, which is necessary for the formation of PROSTAGLANDINS and other AUTACOIDS. It also inhibits the motility of POLYMORPHONUCLEAR LEUKOCYTES. Amuno,Indocid,Indocin,Indomet 140,Indometacin,Indomethacin Hydrochloride,Metindol,Osmosin
D008297 Male Males
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D002199 Capillary Permeability The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement. Microvascular Permeability,Permeability, Capillary,Permeability, Microvascular,Vascular Permeability,Capillary Permeabilities,Microvascular Permeabilities,Permeabilities, Capillary,Permeabilities, Microvascular,Permeabilities, Vascular,Permeability, Vascular,Vascular Permeabilities
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D005753 Gastric Mucosa Lining of the STOMACH, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. The surface cells produce MUCUS that protects the stomach from attack by digestive acid and enzymes. When the epithelium invaginates into the LAMINA PROPRIA at various region of the stomach (CARDIA; GASTRIC FUNDUS; and PYLORUS), different tubular gastric glands are formed. These glands consist of cells that secrete mucus, enzymes, HYDROCHLORIC ACID, or hormones. Cardiac Glands,Gastric Glands,Pyloric Glands,Cardiac Gland,Gastric Gland,Gastric Mucosas,Gland, Cardiac,Gland, Gastric,Gland, Pyloric,Glands, Cardiac,Glands, Gastric,Glands, Pyloric,Mucosa, Gastric,Mucosas, Gastric,Pyloric Gland
D005769 Gastrointestinal Motility The motor activity of the GASTROINTESTINAL TRACT. Intestinal Motility,Gastrointestinal Motilities,Intestinal Motilities,Motilities, Gastrointestinal,Motilities, Intestinal,Motility, Gastrointestinal,Motility, Intestinal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001285 Atropine An alkaloid, originally from Atropa belladonna, but found in other plants, mainly SOLANACEAE. Hyoscyamine is the 3(S)-endo isomer of atropine. AtroPen,Atropin Augenöl,Atropine Sulfate,Atropine Sulfate Anhydrous,Atropinol,Anhydrous, Atropine Sulfate,Augenöl, Atropin,Sulfate Anhydrous, Atropine,Sulfate, Atropine

Related Publications

K Takeuchi, and K Ueshima, and Y Hironaka, and Y Fujioka, and J Matsumoto, and S Okabe
May 1996, Biological & pharmaceutical bulletin,
K Takeuchi, and K Ueshima, and Y Hironaka, and Y Fujioka, and J Matsumoto, and S Okabe
June 1993, Gut,
K Takeuchi, and K Ueshima, and Y Hironaka, and Y Fujioka, and J Matsumoto, and S Okabe
January 1990, Journal of clinical gastroenterology,
K Takeuchi, and K Ueshima, and Y Hironaka, and Y Fujioka, and J Matsumoto, and S Okabe
January 1990, Nihon Shokakibyo Gakkai zasshi = The Japanese journal of gastro-enterology,
K Takeuchi, and K Ueshima, and Y Hironaka, and Y Fujioka, and J Matsumoto, and S Okabe
January 1989, Scandinavian journal of gastroenterology. Supplement,
K Takeuchi, and K Ueshima, and Y Hironaka, and Y Fujioka, and J Matsumoto, and S Okabe
September 1998, Digestive diseases and sciences,
K Takeuchi, and K Ueshima, and Y Hironaka, and Y Fujioka, and J Matsumoto, and S Okabe
November 1988, Nihon Shokakibyo Gakkai zasshi = The Japanese journal of gastro-enterology,
K Takeuchi, and K Ueshima, and Y Hironaka, and Y Fujioka, and J Matsumoto, and S Okabe
January 1989, Scandinavian journal of gastroenterology. Supplement,
K Takeuchi, and K Ueshima, and Y Hironaka, and Y Fujioka, and J Matsumoto, and S Okabe
December 1987, Digestive diseases and sciences,
K Takeuchi, and K Ueshima, and Y Hironaka, and Y Fujioka, and J Matsumoto, and S Okabe
January 1993, Journal of clinical gastroenterology,
Copied contents to your clipboard!