Analysis of integrin signaling by fluorescence resonance energy transfer. 2007

Yingxiao Wang, and Shu Chien
Department of Bioengineering and Molecular & Integrative Physiology, Neuroscience Program, Center for Biophysics and Computational Biology, Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, USA.

Fluorescence resonance energy transfer (FRET) has been proven to be a powerful tool to visualize and quantify the signaling cascades in live cells with high spatiotemporal resolutions. Here we describe the development of the genetically encoded and FRET-based biosensors for imaging of integrin-related signaling cascades. The construction of a FRET biosensor for Src kinase, an important tyrosine kinase involved in integrin-related signaling pathways, is used as an example to illustrate the construction procedure and the pitfalls involved. The design strategies and considerations on improvements of sensitivity and specificity are also discussed. The FRET-based biosensors provide a complementary approach to traditional biochemical assays for the analysis of the functions of integrins and their associated signaling molecules. The dynamic and subcellular visualization enabled by FRET can shed new light on the molecular mechanisms regulating integrin signaling and advance our knowledge in the understanding of integrin-related pathophysiological processes.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D005544 Forecasting The prediction or projection of the nature of future problems or existing conditions based upon the extrapolation or interpretation of existing scientific data or by the application of scientific methodology. Futurology,Projections and Predictions,Future,Predictions and Projections
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016023 Integrins A family of transmembrane glycoproteins (MEMBRANE GLYCOPROTEINS) consisting of noncovalent heterodimers. They interact with a wide variety of ligands including EXTRACELLULAR MATRIX PROTEINS; COMPLEMENT, and other cells, while their intracellular domains interact with the CYTOSKELETON. The integrins consist of at least three identified families: the cytoadhesin receptors (RECEPTORS, CYTOADHESIN), the leukocyte adhesion receptors (RECEPTORS, LEUKOCYTE ADHESION), and the VERY LATE ANTIGEN RECEPTORS. Each family contains a common beta-subunit (INTEGRIN BETA CHAINS) combined with one or more distinct alpha-subunits (INTEGRIN ALPHA CHAINS). These receptors participate in cell-matrix and cell-cell adhesion in many physiologically important processes, including embryological development; HEMOSTASIS; THROMBOSIS; WOUND HEALING; immune and nonimmune defense mechanisms; and oncogenic transformation. Integrin
D031541 Fluorescence Resonance Energy Transfer A type of FLUORESCENCE SPECTROSCOPY using two FLUORESCENT DYES with overlapping emission and absorption spectra, which is used to indicate proximity of labeled molecules. This technique is useful for studying interactions of molecules and PROTEIN FOLDING. Forster Resonance Energy Transfer

Related Publications

Yingxiao Wang, and Shu Chien
January 2012, Methods in molecular biology (Clifton, N.J.),
Yingxiao Wang, and Shu Chien
February 1995, Current opinion in biotechnology,
Yingxiao Wang, and Shu Chien
January 1995, Methods in enzymology,
Yingxiao Wang, and Shu Chien
January 2004, Methods in molecular biology (Clifton, N.J.),
Yingxiao Wang, and Shu Chien
January 2010, Methods in molecular biology (Clifton, N.J.),
Yingxiao Wang, and Shu Chien
January 2000, Nucleic acids symposium series,
Yingxiao Wang, and Shu Chien
January 2006, Methods in molecular biology (Clifton, N.J.),
Yingxiao Wang, and Shu Chien
January 2010, Molecular and cellular biology,
Yingxiao Wang, and Shu Chien
January 2017, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!