Differential connections by intracortical axon collaterals among pyramidal tract cells in the cat motor cortex. 1991

Y Kang, and K Endo, and T Araki
Department of Physiology, Faculty of Medicine, Kyoto University, Japan.

1. Recurrent EPSPs were produced in fast pyramidal tract (PT) cells in the cat motor cortex by stimulation of the medullary pyramid and/or by the glutamate-induced activity of neighbouring PT cells using the spike-triggered averaging (spike-TA) method. 2. In fast PT cells located lateral to the end of the cruciate sulcus, predominantly the motor cortical representation area of the distal forelimb, two components (fast and slow) of recurrent EPSPs were produced by pyramid stimulation. 3. In response to pyramid stimulation, the appearance of the fast and slow components of recurrent EPSPs correlated with the appearance of N1 and N2 field potentials, respectively. 4. The monosynaptic nature of both the fast and slow components of recurrent EPSPs was demonstrated by a double shock test (interstimulus interval less than 5 ms) and high frequency repetitive stimulation (50-100 Hz). 5. The generation of the fast and slow components of recurrent EPSPs was attributed to the synaptic action of recurrent collaterals of fast and slow PT cells, respectively. 6. The amplitude of the slow component of recurrent EPSPs markedly increased with an increase in the stimulus frequency whereas that of the fast component did not, despite the change in stimulus frequency. 7. Selected spike-triggered averaging also revealed frequency facilitation of recurrent individual EPSPs produced in fast PT cells by the activity of single slow PT cells. 8. In fast PT cells located in the anterior and posterior lips of the cruciate sulcus, the motor cortical representation area of the proximal limb or trunk, only the slow component of recurrent EPSPs was produced by pyramid stimulation. 9. It is concluded that the pattern of recurrent connections between neighbouring PT cells differs depending on the motor cortical representation area, and that frequency facilitation of recurrent EPSPs is caused mainly by the input from axon collaterals of slow PT cells.

UI MeSH Term Description Entries
D009044 Motor Cortex Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex. Brodmann Area 4,Brodmann Area 6,Brodmann's Area 4,Brodmann's Area 6,Premotor Cortex and Supplementary Motor Cortex,Premotor and Supplementary Motor Cortices,Anterior Central Gyrus,Gyrus Precentralis,Motor Area,Motor Strip,Precentral Gyrus,Precentral Motor Area,Precentral Motor Cortex,Premotor Area,Premotor Cortex,Primary Motor Area,Primary Motor Cortex,Secondary Motor Areas,Secondary Motor Cortex,Somatic Motor Areas,Somatomotor Areas,Supplementary Motor Area,Area 4, Brodmann,Area 4, Brodmann's,Area 6, Brodmann,Area 6, Brodmann's,Area, Motor,Area, Precentral Motor,Area, Premotor,Area, Primary Motor,Area, Secondary Motor,Area, Somatic Motor,Area, Somatomotor,Area, Supplementary Motor,Brodmann's Area 6s,Brodmanns Area 4,Brodmanns Area 6,Central Gyrus, Anterior,Cortex, Motor,Cortex, Precentral Motor,Cortex, Premotor,Cortex, Primary Motor,Cortex, Secondary Motor,Cortices, Secondary Motor,Gyrus, Anterior Central,Gyrus, Precentral,Motor Area, Precentral,Motor Area, Primary,Motor Area, Secondary,Motor Area, Somatic,Motor Areas,Motor Cortex, Precentral,Motor Cortex, Primary,Motor Cortex, Secondary,Motor Strips,Precentral Motor Areas,Precentral Motor Cortices,Premotor Areas,Primary Motor Areas,Primary Motor Cortices,Secondary Motor Area,Secondary Motor Cortices,Somatic Motor Area,Somatomotor Area,Supplementary Motor Areas
D011712 Pyramidal Tracts Fibers that arise from cells within the cerebral cortex, pass through the medullary pyramid, and descend in the spinal cord. Many authorities say the pyramidal tracts include both the corticospinal and corticobulbar tracts. Corticobulbar Tracts,Corticospinal Tracts,Decussation, Pyramidal,Corticobulbar Tract,Corticospinal Tract,Pyramidal Decussation,Pyramidal Tract,Tract, Corticobulbar,Tract, Corticospinal,Tract, Pyramidal,Tracts, Corticobulbar,Tracts, Corticospinal,Tracts, Pyramidal
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D005552 Forelimb A front limb of a quadruped. (The Random House College Dictionary, 1980) Forelimbs
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

Y Kang, and K Endo, and T Araki
October 1993, The Journal of comparative neurology,
Y Kang, and K Endo, and T Araki
January 1980, Nervnaia sistema,
Y Kang, and K Endo, and T Araki
January 1978, Journal of neuroscience research,
Y Kang, and K Endo, and T Araki
January 1963, Acta morphologica Academiae Scientiarum Hungaricae,
Y Kang, and K Endo, and T Araki
January 1986, Experimental brain research,
Y Kang, and K Endo, and T Araki
July 2009, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!