Limited distribution of pertussis toxin in rat brain after injection into the lateral cerebral ventricles. 1991

I van der Ploeg, and A Cintra, and N Altiok, and P Askelöf, and K Fuxe, and B B Fredholm
Department of Pharmacology, Karolinska Institutet, Stockholm, Sweden.

In vivo administration of pertussis toxin is often used to study the involvement of guanine nucleotide binding proteins in signal transduction. Especially when it is administered in the brain the effect is often poor. This could be due to the fact that pertussis toxin does not reach the area of interest. To evaluate the extent to which pertussis toxin is distributed in rat brain after intraventricular injection, different techniques were used. Immunohistochemical studies with an antibody against pertussis toxin showed that immunoreactivity was limited to periventricular brain structures less than 0.5 mm from the lumen. The highest immunoreactivity was seen 16-24 h after injection. After 96 h the labeling was very weak. The proportion of guanine nucleotide binding proteins that were ADP-ribosylated by in vivo injection of pertussis toxin into the ventricles as assessed by in vitro [32P]-back-ADP-ribosylation was very low 48 h after the injection, in all regions studied. Direct injection of pertussis toxin into the brain caused a marked ADP-ribosylation localized to the region injected that was maximal at 72 h after injection. At 96 h there were also effects after control injections, indicating non-specific effects. Synaptosomal membranes and other membranes were equally affected by pertussis toxin. The results suggest that in studies regarding the effect of pertussis toxin treatment on signal transduction, the toxin must be injected very close to the brain region of interest and, furthermore, that the rats should be killed 48-72 h after injection. In case of lack of effect on the response of interest one should examine whether the ADP-ribosylation of pertussis toxin-sensitive guanine nucleotide binding proteins in the area of concern has been affected.

UI MeSH Term Description Entries
D007267 Injections Introduction of substances into the body using a needle and syringe. Injectables,Injectable,Injection
D007276 Injections, Intraventricular Injections into the cerebral ventricles. Intraventricular Injections,Injection, Intraventricular,Intraventricular Injection
D008297 Male Males
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010566 Virulence Factors, Bordetella A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D000246 Adenosine Diphosphate Ribose An ester formed between the aldehydic carbon of RIBOSE and the terminal phosphate of ADENOSINE DIPHOSPHATE. It is produced by the hydrolysis of nicotinamide-adenine dinucleotide (NAD) by a variety of enzymes, some of which transfer an ADP-ribosyl group to target proteins. ADP Ribose,Adenosine Diphosphoribose,ADP-Ribose,ADPribose,Adenosine 5'-Diphosphoribose,5'-Diphosphoribose, Adenosine,Adenosine 5' Diphosphoribose,Diphosphate Ribose, Adenosine,Diphosphoribose, Adenosine,Ribose, ADP,Ribose, Adenosine Diphosphate

Related Publications

I van der Ploeg, and A Cintra, and N Altiok, and P Askelöf, and K Fuxe, and B B Fredholm
April 1989, Research communications in chemical pathology and pharmacology,
I van der Ploeg, and A Cintra, and N Altiok, and P Askelöf, and K Fuxe, and B B Fredholm
November 2019, Journal of vitreoretinal diseases,
I van der Ploeg, and A Cintra, and N Altiok, and P Askelöf, and K Fuxe, and B B Fredholm
January 1969, Annales medicinae experimentalis et biologiae Fenniae,
I van der Ploeg, and A Cintra, and N Altiok, and P Askelöf, and K Fuxe, and B B Fredholm
August 1995, Journal of neuroscience methods,
I van der Ploeg, and A Cintra, and N Altiok, and P Askelöf, and K Fuxe, and B B Fredholm
July 1918, Annals of surgery,
I van der Ploeg, and A Cintra, and N Altiok, and P Askelöf, and K Fuxe, and B B Fredholm
June 2021, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine,
I van der Ploeg, and A Cintra, and N Altiok, and P Askelöf, and K Fuxe, and B B Fredholm
August 1967, Respiration physiology,
I van der Ploeg, and A Cintra, and N Altiok, and P Askelöf, and K Fuxe, and B B Fredholm
February 1958, The Journal of physiology,
I van der Ploeg, and A Cintra, and N Altiok, and P Askelöf, and K Fuxe, and B B Fredholm
December 1961, British journal of pharmacology and chemotherapy,
I van der Ploeg, and A Cintra, and N Altiok, and P Askelöf, and K Fuxe, and B B Fredholm
November 1991, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!