Characterization of microsomal methyl sterol demethylase in two Morris hepatomas. 1976

M T Williams, and J L Gaylor, and H P Morris

Previously, we reported that the rate of metabolism of methyl sterol intermediates of cholesterol biosynthesis by broken-cell preparations of Morriss hepatoma 7777 is very slow, whereas the intact tumors are known to synthesize cholesterol quite efficiently. Active preparations have now been obtained by substitution of pyrophosphate for phosphate buffer. Although substitution of pyrophosphate buffer markedly enhances microsomal methyl sterol demethylation rates 3- to 4-fold in hepatoma 7777, other microsomal enzymes and electron carriers in either liver or a more slowly growing hepatoma appear to be unaffected by pyrophosphate. Several properties of the active microsomal methyl sterol demethylase have now been compared for control rat liver, host liver, tumor 7777, and tumor 5123C. Conditions necessary for the assay of initial velocities of enzymic reactions in the tumor microsomes have been established with respect to the amount of protein, time-course, concentrations of cofactors and substrate, pH, and other variables. The K'm and the responses to the variables studied above are very similar for methyl sterol demethylase of microsomes isolated from control liver, host liver, tumor 5123C, and tumor 7777. The multienzymic demethylase in the various preparations has been found to be inhibited similarly by in vitro additions of cyanide, cytochrome c, and bile salts. Thus, the enzymes of the microsomal-bound 4-methyl sterol demethylase of cholesterol biosynthesis appear to be very similar in liver and these 2 Morris hepatomas. When xenobiotic inducers of microsomal oxidases, such as phenobarbital and methylcholanthrene, are administered to normal and tumor-bearing rats, elevated rates of methyl sterol demethylation are observed with isolated liver microsomes obtained from both normal and tumor-bearing rats. Similar increases are not observed in the tumors. Furthermore, daily administration of an intestinal bile acid sequestrant elevates hepatic methyl sterol demethylase, but statistically significant changes were not observed in tumors 7777 and 5123C. Since the enzymes of methyl sterol demethylase appear to be grossly similar in liver and these hepatomas, regulation of the activity of the multienzymic system contained in the tumors may be altered. On the other hand, these agents in vivo simply may not affect liver and the hepatomas similarly, due to a lack of uptake of the foreign substances by the tumor that has been transplanted to the thighs.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008113 Liver Neoplasms Tumors or cancer of the LIVER. Cancer of Liver,Hepatic Cancer,Liver Cancer,Cancer of the Liver,Cancer, Hepatocellular,Hepatic Neoplasms,Hepatocellular Cancer,Neoplasms, Hepatic,Neoplasms, Liver,Cancer, Hepatic,Cancer, Liver,Cancers, Hepatic,Cancers, Hepatocellular,Cancers, Liver,Hepatic Cancers,Hepatic Neoplasm,Hepatocellular Cancers,Liver Cancers,Liver Neoplasm,Neoplasm, Hepatic,Neoplasm, Liver
D008297 Male Males
D008748 Methylcholanthrene A carcinogen that is often used in experimental cancer studies. 20-Methylcholanthrene,3-Methylcholanthrene,20 Methylcholanthrene,3 Methylcholanthrene
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D009374 Neoplasms, Experimental Experimentally induced new abnormal growth of TISSUES in animals to provide models for studying human neoplasms. Experimental Neoplasms,Experimental Neoplasm,Neoplasm, Experimental
D010634 Phenobarbital A barbituric acid derivative that acts as a nonselective central nervous system depressant. It potentiates GAMMA-AMINOBUTYRIC ACID action on GABA-A RECEPTORS, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. Phenemal,Phenobarbitone,Phenylbarbital,Gardenal,Hysteps,Luminal,Phenobarbital Sodium,Phenobarbital, Monosodium Salt,Phenylethylbarbituric Acid,Acid, Phenylethylbarbituric,Monosodium Salt Phenobarbital,Sodium, Phenobarbital
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D011756 Diphosphates Inorganic salts of phosphoric acid that contain two phosphate groups. Diphosphate,Pyrophosphate Analog,Pyrophosphates,Pyrophosphate Analogs,Analog, Pyrophosphate

Related Publications

M T Williams, and J L Gaylor, and H P Morris
March 1974, The Journal of biological chemistry,
M T Williams, and J L Gaylor, and H P Morris
June 1973, Cancer research,
M T Williams, and J L Gaylor, and H P Morris
October 1974, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
M T Williams, and J L Gaylor, and H P Morris
June 1971, Cancer research,
M T Williams, and J L Gaylor, and H P Morris
June 1983, Cancer letters,
M T Williams, and J L Gaylor, and H P Morris
August 1979, Cancer research,
M T Williams, and J L Gaylor, and H P Morris
November 1981, Archives of biochemistry and biophysics,
M T Williams, and J L Gaylor, and H P Morris
December 1972, The Johns Hopkins medical journal,
M T Williams, and J L Gaylor, and H P Morris
April 1981, The Journal of biological chemistry,
Copied contents to your clipboard!