Acoustic-electric interactions in the guinea pig auditory nerve: simultaneous and forward masking of the electrically evoked compound action potential. 2007

Kirill V Nourski, and Paul J Abbas, and Charles A Miller, and Barbara K Robinson, and Fuh-Cherng Jeng
Department of Otolaryngology--Head and Neck Surgery, The University of Iowa, Iowa City, IA 52242, USA. kirill-nourski@uiowa.edu

The study investigated the time course of the effects of acoustic and electric stimulation on the electrically evoked compound action potential (ECAP). Adult guinea pigs were used in acute experimental sessions. Bursts of acoustic noise and high-rate (5000 pulses/s) electric pulse trains were used as maskers. Biphasic electric pulses were used as probes. ECAPs were recorded from the auditory nerve trunk. Simultaneous masking of the ECAP with acoustic noise featured an onset effect and a decrease in the amount of masking to a steady state. It was characterized by a two-component exponential function. The amount of masking increased with masker level and decreased with probe level. Post-stimulatory ECAP recovery often featured a non-monotonic time course, described by a three-component exponent. Electric maskers produced similar post-stimulatory effects in hearing and acutely deafened subjects. Acoustic stimulation affects the ECAP in a level- and time-dependent manner. Simultaneous masking follows a time course comparable to that of adaptation to an acoustic stimulus. Refractoriness, spontaneous activity, and adaptation are suggested to play a role in ECAP recovery. Post-stimulatory changes in synchrony, possibly due to recovery of spontaneous activity and an additional hair-cell independent mechanism, are hypothesized to contribute to the observed non-monotonicity of recovery.

UI MeSH Term Description Entries
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009355 Neomycin Aminoglycoside antibiotic complex produced by Streptomyces fradiae. It is composed of neomycins A, B, and C, and acts by inhibiting translation during protein synthesis. Fradiomycin Sulfate,Neomycin Palmitate,Neomycin Sulfate
D010470 Perceptual Masking The interference of one perceptual stimulus with another causing a decrease or lessening in perceptual effectiveness. Masking, Perceptual,Maskings, Perceptual,Perceptual Maskings
D012032 Refractory Period, Electrophysiological The period of time following the triggering of an ACTION POTENTIAL when the CELL MEMBRANE has changed to an unexcitable state and is gradually restored to the resting (excitable) state. During the absolute refractory period no other stimulus can trigger a response. This is followed by the relative refractory period during which the cell gradually becomes more excitable and the stronger impulse that is required to illicit a response gradually lessens to that required during the resting state. Period, Neurologic Refractory,Periods, Neurologic Refractory,Refractory Period, Neurologic,Tetanic Fade,Vvedenskii Inhibition,Wedensky Inhibition,Inhibition, Vvedenskii,Inhibition, Wedensky,Neurologic Refractory Period,Neurologic Refractory Periods,Neuromuscular Fade,Neuromuscular Transmission Fade,Refractory Period, Neurological,Refractory Periods, Neurologic,Electrophysiological Refractory Period,Electrophysiological Refractory Periods,Fade, Neuromuscular,Fade, Neuromuscular Transmission,Fade, Tetanic,Neurological Refractory Period,Neurological Refractory Periods,Refractory Periods, Electrophysiological,Refractory Periods, Neurological,Transmission Fade, Neuromuscular
D003056 Cochlear Nerve The cochlear part of the 8th cranial nerve (VESTIBULOCOCHLEAR NERVE). The cochlear nerve fibers originate from neurons of the SPIRAL GANGLION and project peripherally to cochlear hair cells and centrally to the cochlear nuclei (COCHLEAR NUCLEUS) of the BRAIN STEM. They mediate the sense of hearing. Acoustic Nerve,Auditory Nerve,Acoustic Nerves,Auditory Nerves,Cochlear Nerves,Nerve, Acoustic,Nerve, Auditory,Nerve, Cochlear,Nerves, Acoustic,Nerves, Auditory,Nerves, Cochlear
D003638 Deafness A general term for the complete loss of the ability to hear from both ears. Deafness Permanent,Hearing Loss Permanent,Prelingual Deafness,Deaf Mutism,Deaf-Mutism,Deafness, Acquired,Hearing Loss, Complete,Hearing Loss, Extreme,Acquired Deafness,Complete Hearing Loss,Deafness, Prelingual,Extreme Hearing Loss,Permanent, Deafness,Permanent, Hearing Loss,Permanents, Deafness
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005072 Evoked Potentials, Auditory The electric response evoked in the CEREBRAL CORTEX by ACOUSTIC STIMULATION or stimulation of the AUDITORY PATHWAYS. Auditory Evoked Potentials,Auditory Evoked Response,Auditory Evoked Potential,Auditory Evoked Responses,Evoked Potential, Auditory,Evoked Response, Auditory,Evoked Responses, Auditory,Potentials, Auditory Evoked
D005665 Furosemide A benzoic-sulfonamide-furan. It is a diuretic with fast onset and short duration that is used for EDEMA and chronic RENAL INSUFFICIENCY. Frusemide,Fursemide,Errolon,Frusemid,Furanthril,Furantral,Furosemide Monohydrochloride,Furosemide Monosodium Salt,Fusid,Lasix

Related Publications

Kirill V Nourski, and Paul J Abbas, and Charles A Miller, and Barbara K Robinson, and Fuh-Cherng Jeng
January 1974, Archives of oto-rhino-laryngology,
Kirill V Nourski, and Paul J Abbas, and Charles A Miller, and Barbara K Robinson, and Fuh-Cherng Jeng
April 1997, Hearing research,
Kirill V Nourski, and Paul J Abbas, and Charles A Miller, and Barbara K Robinson, and Fuh-Cherng Jeng
March 1994, The American journal of otology,
Kirill V Nourski, and Paul J Abbas, and Charles A Miller, and Barbara K Robinson, and Fuh-Cherng Jeng
January 2020, Vestnik otorinolaringologii,
Kirill V Nourski, and Paul J Abbas, and Charles A Miller, and Barbara K Robinson, and Fuh-Cherng Jeng
January 2016, Ear and hearing,
Kirill V Nourski, and Paul J Abbas, and Charles A Miller, and Barbara K Robinson, and Fuh-Cherng Jeng
July 2004, Artificial intelligence in medicine,
Kirill V Nourski, and Paul J Abbas, and Charles A Miller, and Barbara K Robinson, and Fuh-Cherng Jeng
January 2016, Brazilian journal of otorhinolaryngology,
Kirill V Nourski, and Paul J Abbas, and Charles A Miller, and Barbara K Robinson, and Fuh-Cherng Jeng
July 2005, Hearing research,
Kirill V Nourski, and Paul J Abbas, and Charles A Miller, and Barbara K Robinson, and Fuh-Cherng Jeng
January 2011, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology,
Kirill V Nourski, and Paul J Abbas, and Charles A Miller, and Barbara K Robinson, and Fuh-Cherng Jeng
December 1994, Hearing research,
Copied contents to your clipboard!