A possible role of cyclic AMP in mediating the effects of thyrotropin-releasing hormone on prolactin release and on prolactin and growth hormone synthesis in pituitary cells in culture. 1976

P S Dannies, and K M Gautvik, and A H Tashjian

Thyrotropin-releasing hormone (TRH) has 3 effects on clonal strains of rat pituitary cells in culture (GH-cells). Two long-term effects of TRH on GH-cells, which are measurable after 3 h or longer, have been previously reported; these are an increase in prolactin synthesis and a decrease in growth hormone production. We report here that TRH also stimulates the rapid release of stored intracellular prolactin. We have investigated the role of cyclic AMP as a possible mediator of the effects of TRH on GH-cells. Cyclic AMP concentrations are higher in cells treated with TRH compared with paired controls; a maximum difference of greater than 150% of control values is detected at 15 min if the incubation is performed in serum-free medium in the presence of 1 mM theophylline. The concentration of TRH required to give half-maximum increases in both prolactin release and cyclic AMP accumulation is 0.3 nM; half-maximal increases in prolactin synthesis occur at 3 nM TRH. Exogenous cyclic AMP (1 mM) causes only a slight increase in prolactin release; 8-bromo-cyclic AMP and 8-methylthio-cyclic AMP (1 mM) do not cause significant release. Phosphodiesterase inhibitors (0.3 mM theophylline, 0.03 mM isobutyl-methylxanthine) increase prolactin release but their effects on hormone synthesis are more complicated. Isobutylmethylxanthine, 8-bromo-cyclic AMP and 8-methylthio-cyclic AMP (0.4 MM) increase prolactin synthesis, but do not significantly affect growth hormone synthesis. Theophylline increases the synthesis of both hormones. Dibutyryl cyclic AMP (0.5 mM or more) increases prolactin release and both growth hormone and prolactin synthesis, but equivalent amounts of sodium butyrate have the same effects. We conclude that in GH-cells under carefully defined experimental conditions: 1) TRH causes an increase in intracellular cyclic AMP concentrations; 2) the increase in endogenous cyclic AMP and the effects of phosphodiesterase inhibitors are consistent with a model with cyclic AMP as a mediator of the effects of TRH on prolactin release; however, they do not prove this model, because the interpretation of these results depends on assumptions which may not all be valid; and 3) none of the analogs of cyclic AMP or the phosphodiesterase inhibitors tested mimic the decrease in growth hormone production caused by TRH.

UI MeSH Term Description Entries
D010726 Phosphodiesterase Inhibitors Compounds which inhibit or antagonize the biosynthesis or actions of phosphodiesterases. Phosphodiesterase Antagonists,Phosphodiesterase Inhibitor,Phosphoric Diester Hydrolase Inhibitors,Antiphosphodiesterases,Inhibitor, Phosphodiesterase
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D010903 Pituitary Gland, Anterior The anterior glandular lobe of the pituitary gland, also known as the adenohypophysis. It secretes the ADENOHYPOPHYSEAL HORMONES that regulate vital functions such as GROWTH; METABOLISM; and REPRODUCTION. Adenohypophysis,Anterior Lobe of Pituitary,Anterior Pituitary Gland,Lobus Anterior,Pars Distalis of Pituitary,Adenohypophyses,Anterior Pituitary Glands,Anterior, Lobus,Anteriors, Lobus,Lobus Anteriors,Pituitary Anterior Lobe,Pituitary Glands, Anterior,Pituitary Pars Distalis
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013006 Growth Hormone A polypeptide that is secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Growth hormone, also known as somatotropin, stimulates mitosis, cell differentiation and cell growth. Species-specific growth hormones have been synthesized. Growth Hormone, Recombinant,Pituitary Growth Hormone,Recombinant Growth Hormone,Somatotropin,Somatotropin, Recombinant,Growth Hormone, Pituitary,Growth Hormones Pituitary, Recombinant,Pituitary Growth Hormones, Recombinant,Recombinant Growth Hormones,Recombinant Pituitary Growth Hormones,Recombinant Somatotropins,Somatotropins, Recombinant,Growth Hormones, Recombinant,Recombinant Somatotropin
D013268 Stimulation, Chemical The increase in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical. Chemical Stimulation,Chemical Stimulations,Stimulations, Chemical
D013973 Thyrotropin-Releasing Hormone A tripeptide that stimulates the release of THYROTROPIN and PROLACTIN. It is synthesized by the neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, TRH (was called TRF) stimulates the release of TSH and PRL from the ANTERIOR PITUITARY GLAND. Protirelin,Thyroliberin,Abbott-38579,Antepan,Proterelin Tartrate,Proterelin Tartrate Hydrate,Protirelin Tartrate (1:1),Relefact TRH,Stimu-TSH,TRH Ferring,TRH Prem,Thypinone,Thyroliberin TRH Merck,Thyrotropin-Releasing Factor,Thyrotropin-Releasing Hormone Tartrate,Abbott 38579,Abbott38579,Hydrate, Proterelin Tartrate,Prem, TRH,Stimu TSH,StimuTSH,TRH, Relefact,Tartrate Hydrate, Proterelin,Thyrotropin Releasing Factor,Thyrotropin Releasing Hormone,Thyrotropin Releasing Hormone Tartrate

Related Publications

P S Dannies, and K M Gautvik, and A H Tashjian
April 1978, Biochemical and biophysical research communications,
P S Dannies, and K M Gautvik, and A H Tashjian
August 1987, General and comparative endocrinology,
P S Dannies, and K M Gautvik, and A H Tashjian
September 1973, The Journal of biological chemistry,
P S Dannies, and K M Gautvik, and A H Tashjian
January 1984, The Journal of biological chemistry,
P S Dannies, and K M Gautvik, and A H Tashjian
October 1987, Neuroendocrinology,
Copied contents to your clipboard!