Inhibition of growth by amber suppressors in yeast. 1976

S W Liebman, and F Sherman

Strains of the yeast Saccharomyces cerevisiae that contain highly efficient amber (UAG) suppressors grow poorly on nutrient medium, while normal or nearly normal growth rates are observed when these strains lose the supressors or when the suppressors are mutated to lower efficiencies. The different growth rates account for the accumulation of mutants with lowered efficiencies in cultures of strains with highly efficient amber suppressors. Genetic analyses indicate that one of the mutations with a lowered efficiency of suppression is caused by an intragenic mutation of the amber supressor. The inhibition of growth caused by excessive suppression is expected to be exacerbated when appropriate suppressors are combined together in haploid cells if two suppressors act with a greater efficiency than a single suppressor. Such retardation of growth is observed with combinations of two UAA (ochre) suppressors (Gilmore 1967) and with combinations of two UAG suppressors when the efficiencies of each of the suppressors are within a critical range. In contrast, combinations of a UAA suppressor and a UAG suppressor do not affect growth rate. Apparently while either excessive UAA or excessive UAG suppression is deleterious to yeast, a moderate level of simultaneous UAA and UAG suppression is not.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010443 Peptide Chain Termination, Translational A process of GENETIC TRANSLATION whereby the terminal amino acid is added to a lengthening polypeptide. This termination process is signaled from the MESSENGER RNA, by one of three termination codons (CODON, TERMINATOR) that immediately follows the last amino acid-specifying CODON. Chain Termination, Peptide, Translational,Protein Biosynthesis Termination,Protein Chain Termination, Translational,Protein Translation Termination,Translation Termination, Genetic,Translation Termination, Protein,Translational Peptide Chain Termination,Translational Termination, Protein,Biosynthesis Termination, Protein,Genetic Translation Termination,Protein Translational Termination,Termination, Genetic Translation,Termination, Protein Biosynthesis,Termination, Protein Translation,Termination, Protein Translational
D003574 Cytochrome c Group A group of cytochromes with covalent thioether linkages between either or both of the vinyl side chains of protoheme and the protein. (Enzyme Nomenclature, 1992, p539) Cytochromes Type c,Group, Cytochrome c,Type c, Cytochromes
D003575 Cytochromes c1 The 30-kDa membrane-bound c-type cytochrome protein of mitochondria that functions as an electron donor to CYTOCHROME C GROUP in the mitochondrial and bacterial RESPIRATORY CHAIN. (From Enzyme Nomenclature, 1992, p545) Cytochrome c1,Cytochrome c-1,Cytochrome c 1
D005815 Genetic Code The meaning ascribed to the BASE SEQUENCE with respect to how it is translated into AMINO ACID SEQUENCE. The start, stop, and order of amino acids of a protein is specified by consecutive triplets of nucleotides called codons (CODON). Code, Genetic,Codes, Genetic,Genetic Codes
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013489 Suppression, Genetic Mutation process that restores the wild-type PHENOTYPE in an organism possessing a mutationally altered GENOTYPE. The second "suppressor" mutation may be on a different gene, on the same gene but located at a distance from the site of the primary mutation, or in extrachromosomal genes (EXTRACHROMOSOMAL INHERITANCE). Suppressor Mutation,Genetic Suppression,Genetic Suppressions,Mutation, Suppressor,Mutations, Suppressor,Suppressions, Genetic,Suppressor Mutations
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

S W Liebman, and F Sherman
April 1975, Genetics,
S W Liebman, and F Sherman
October 1985, Genetics,
S W Liebman, and F Sherman
July 1968, Proceedings of the National Academy of Sciences of the United States of America,
S W Liebman, and F Sherman
January 1987, Annales de l'Institut Pasteur. Microbiology,
S W Liebman, and F Sherman
September 1968, Journal of molecular biology,
S W Liebman, and F Sherman
January 1977, Proceedings of the National Academy of Sciences of the United States of America,
S W Liebman, and F Sherman
August 1966, Journal of bacteriology,
S W Liebman, and F Sherman
December 1982, Proceedings of the National Academy of Sciences of the United States of America,
S W Liebman, and F Sherman
January 1974, Current topics in microbiology and immunology,
S W Liebman, and F Sherman
April 1968, Journal of molecular biology,
Copied contents to your clipboard!